
Automatic verification of privacy properties in
the applied pi calculus?

Stéphanie Delaune1,2, Mark Ryan1, and Ben Smyth1

1 School of Computer Science, University of Birmingham, UK
{B.A.Smyth, M.D.Ryan}@cs.bham.ac.uk

2 LSV, CNRS & INRIA & ENS Cachan, France
delaune@lsv.ens-cachan.fr

Abstract. We develop a formal method verification technique for cryp-
tographic protocols. We focus on proving equivalences of the kind P ∼ Q,
where the processes P and Q have the same structure and differ only in
the choice of terms. The calculus of ProVerif, a variant of the applied
pi calculus, makes some progress in this direction. We expand the scope
of ProVerif, to provide reasoning about further equivalences. We also
provide an extension which allows modelling of protocols which require
global synchronisation. Finally we develop an algorithm to enable auto-
mated reasoning. We demonstrate the practicality of our work with two
case studies.

1 Introduction

Security protocols are small distributed programs that aim to provide some se-
curity related objective over a public communications network like the Internet.
Considering the increasing size of networks and their dependence on crypto-
graphic protocols, a high level of assurance is needed in the correctness of such
protocols. It is difficult to ascertain whether or not a cryptographic protocol sat-
isfies its security requirements. Numerous protocols have appeared in literature
and have subsequently been found to be flawed [1–4]. Typically, cryptographic
protocols are expected to achieve their objectives in the presence of an attacker
that is assumed to have full control of the network (sometimes called the Dolev-
Yao attacker). The attacker can therefore eavesdrop, replay, modify, inject and
block messages. The attacker is also able to perform cryptographic operations
when in possession of the required keys. Furthermore the attacker may be in
control of one or more of the protocol’s participants. With no more than the
abilities listed, and irrespective of the underlying cryptographic algorithms, nu-
merous protocols have been found to be vulnerable to attack. Formal verification
of cryptographic protocols is therefore required to ensure that cryptographic pro-
tocols can be deployed without the risk of damage and ultimately financial loss.

? This work has been partly supported by the ARA SESUR project AVOTÉ and
the EPSRC projects Verifying anonymity and privacy properties (EP/E040829/1)
& UbiVal (EP/D076625/1)

Traditionally cryptographic protocols have been required to satisfy secrecy
and authentication properties [5]. These requirements have been successfully ver-
ified by modelling them as reachability problems. Current research into appli-
cations such as electronic voting, fair exchange, reputation systems and trusted
computing has resulted in a plethora of new requirements which protocols must
satisfy (e.g. [6–8]). Some of these properties cannot easily be expressed using tra-
ditional reachability techniques but can be written as equivalences. For example,
the privacy, receipt-freeness and coercion resistance properties of electronic vot-
ing protocols can be expressed using equivalences (see [9, 10]).

We focus on proving equivalences of the kind P ∼ Q, where the processes P
and Q have the same structure and differ only in the choice of terms. For exam-
ple, the secret ballot (privacy) property of an electronic voting protocol can be
expressed as

P (skva, v1) | P (skvb, v2) ∼ P (skva, v2) | P (skvb, v1)

where P is the voter process with two parameters: its secret key (skva, skvb)
and the candidate for whom he wish to cast their vote (here v1, v2). Histori-
cally many applications of equivalences to prove security requirements of cryp-
tographic protocols have relied upon hand written proofs [9, 10]. Such proofs
are time consuming and error prone. Accordingly, we direct our attention to
automated techniques. The calculus developed by Blanchet et al. makes some
progress in this direction [11]. However, the method developed for proving ob-
servational equivalence is not complete and is unable to prove certain interesting
equivalences.

Contribution. We build upon [11] to provide reasoning about further equiva-
lences. We also extend the syntax to allow the modelling of a new class of pro-
cesses which require global synchronisation. Finally we develop an algorithm to
enable automated reasoning about security requirements. The focus of our work
is to model the privacy properties increasingly found in cryptographic protocols.
We demonstrate the practical application of our contribution with case studies.
Using our approach we provide the first automated proof that the electronic vot-
ing protocol due to Fujioka, Okamoto & Ohta (FOO) [12] satisfies privacy. As a
second case study we provide a formal methods proof that the Direct Anonymous
Attestation (DAA) [8] protocol also satisfies privacy (the DAA authors provided
a provable security proof). The ProVerif source code that accompanies this paper
is available online at the following address http://www.cs.bham.ac.uk/˜bas/.

Related work. Kremer & Ryan [9] have previously demonstrated the electronic
voting protocol FOO satisfies fairness, eligibility and privacy. The first two prop-
erties were verified automatically using ProVerif, and the third relied on a hand
proof. In this paper we present the first automated proof of this protocol. The
DAA protocol makes extensive use of signature proofs of knowledge. Delaune
et al. [13] model zero knowledge proofs with an equational theory and prove
properties of protocols which use zero knowledge using the applied pi. Backes
et al. [14] model a variant of DAA and provide some proofs. However, their

2

model is not accurate w.r.t. DAA, because it uses the TPM endorsement key to
produce a digital signature and they model zero knowledge proofs instead of sig-
nature proofs of knowledge. In addition the secret f value is incorrectly formed,
which would allow an attack of cross issuer linkability [15]. Nevertheless their
idea of modelling synchronisation by private channel communication influenced
the design of our translator algorithm.

Structure of paper. The remainder of this paper is structured as follows. Section 2
introduces the calculus of ProVerif [11] and discusses its limitations. Section 3
provides our extension to the calculus. We consider the FOO and DAA case
studies in Sections 4 & 5 and we conclude in Section 6.

2 Applied pi calculus

The process calculi of Blanchet et al. [11], used by the tool ProVerif, is a variant
of the applied pi calculus [16], a process calculi for formally modelling concur-
rent systems and their interactions. In this paper we use the phrase calculus of
ProVerif to mean the calculus defined in [11], and ProVerif software tool to refer
to the software tool developed in accompaniment of [11].

2.1 Syntax and informal semantics

The calculus assumes an infinite set of names and an infinite set of variables.
It also assumes a signature Σ which consists of a finite set of function symbols
each with an associated arity. A function symbol with arity 0 is used to define
a constant symbol. We distinguish two categories of function symbols: construc-
tors f and destructors g. We use h to range over both constructors and destruc-
tors. We use standard notation for function application h(M1, . . . ,Mn) where h
ranges over the functions of Σ and n is the arity of h. Destructors are partial,
non-deterministic operations on terms that processes can apply. They represent
primitives that can visibly succeed or fail, while constructors and the associated
equational theory apply to primitives that always succeed but may sometimes
return “junk”. The grammar for terms/term evaluations is given below. The
meaning of the choice operator is explained later on.

M,N ::= term D ::= term evaluation
a, b, c name M term
x, y, z variable choice[D,D′] choice term eval.
choice[M,M ′] choice term h(D1, . . . , Dn) function evaluation
f(M1, . . . ,Mn) constructor

We equip the signature Σ with an equational theory, say E, i.e. a finite set
of equations of the form Mi = Ni, where Mi and Ni are terms without names.
The equational theory is then obtained from this set of equations by reflexive,
symmetric and transitive closure, closure by substitution of terms for variables

3

and closure by context application. We write M =E N (resp. M 6=E N) for
equality (resp. inequality) modulo E.

Processes are built up in a similar way to processes in the pi calculus, except
that messages can contain terms/term evaluations (rather than just names). In
the grammar described below, M and N are terms, D is a term evaluation, a
is a name, x a variable and t an integer. The syntax also permits the use of
comments in the form (* comment *).

P,Q,R ::= processes
null null process
P | Q parallel composition
!P replication
new a;P name restriction
let x = D in P else Q term evaluation
in(M,x);P message input
out(M,N);P message output
phase t;P weak phase

The choice operator allows us to model a pair of processes which have the
same structure and differ only in the choice of terms and terms evaluations. We
call such a pair of processes a biprocess. Given a biprocess P , we define two
processes fst(P) and snd(P) as follows: fst(P) is obtained by replacing all occur-
rences of choice[M,M ′] with M and choice[D,D′] with D in P . Similarly, snd(P)
is obtained by replacing choice[M,M ′] with M ′ and choice[D,D′] with D′ in P .
We define fst(D), fst(M), snd(D) and snd(M) similarly.

As usual, names and variables have scopes, which are delimited by restrictions
and by inputs. We write fv(P), bv(P) (resp. fn(P) and bn(P)) for the sets of
free and bound variables (resp. names) in P . A process is closed if it has no free
variables (but it may contain free names). A context C[] is a process with a hole.
We obtain C[P] as the result of filling C[]’s hole with P . An evaluation context C
is a closed context built from [], C | P , P | C and new a;C. We sometimes refer
to contexts without choice as plain contexts.

The major difference between the syntax of the applied pi calculus and the
calculus of ProVerif, is the introduction of the choice operator. In addition there
are some minor changes. For instance, communication is permitted on arbitrary
terms, not just names. Function symbols are supplemented with destructors.
Active substitutions are removed in favour of term evaluations. The syntax does
not include the conditional “if M = N then P else Q”, which can be defined as
“let x = equals(M,N) in P else Q” where x 6∈ fv(P) and equals is a deconstruc-
tor with the equation equals(x, x) = x. We omit “else Q” when the process Q
is null. Finally the calculus of ProVerif does not rely on a sort system. We believe
that processes written in the calculus of ProVerif, can be mapped to semantically
equivalent processes in the applied pi calculus and vice-versa, although proving
this remains an open problem. This can easily be extended to biprocesses.

4

2.2 Operational semantics

The operational semantics of processes in the calculus of ProVerif, are defined
by three relations, namely term evaluation ⇓, structural equivalence ≡ and re-
ductions −→. Structural equivalence and reductions are only defined on closed
processes. We write −→∗ for the reflexive and transitive closure of −→, and −→∗≡
for its union with ≡. The operational semantics for the calculus of ProVerif
differ in minor ways from the semantics of the applied pi calculus. Structural
equivalence is the smallest equivalence relation on processes that is closed under
application of evaluation contexts and some other standard rules such as asso-
ciativity and commutativity of the parallel operator and commutativity of the
bindings. Reduction is the smallest relation on biprocesses closed under struc-
tural equivalence and application of evaluation contexts such that

Red I/O out(N,M);Q | in(N ′, x);P −→ Q | P{M/x}
if fst(N) = fst(N ′) and snd(N) = snd(N ′)

Red Fun 1 let x = D in P else Q −→ P{choice[M1,M2]/x}
if fst(D) ⇓ M1 and snd(D) ⇓ M2

Red Fun 2 let x = D in P else Q −→ Q
if there is no M1 such that fst(D) ⇓ M1 and
there is no M2 such that snd(D) ⇓ M2

Red Repl !P −→ P |!P

2.3 Extension to processes with weak phases

Many protocols can be broken into phases, and their security properties can
be formulated in terms of these phases. Typically, for instance, if a protocol
discloses a session key after the conclusion of a session, then the secrecy of the
data exchanged during the session may be compromised but not its authenticity.
To enable modelling of protocols with several phases the calculus of ProVerif is
extended [11].

The syntax of processes is supplemented with a phase prefix “phase t;P”,
where t is a non-negative integer. Intuitively, t represents a global clock, and the
process “phase t;P” is active only during phase t. However, it is possible that
not all instructions of a particular phase are executed prior to a phase transition.
Moreover, parallel processes may only communicate if they are under the same
phase.

Example 1. Let P = phase 1; out(c, a) | phase 2; out(c, b). The process P can
output b without having first output a.

The semantics of processes are extended to deal with weak phases (see [11]).

5

2.4 Observational equivalence

In this section we establish sufficient conditions for observational equivalence in
the calculus of ProVerif. We first recall the standard definition of observational
equivalence for the applied pi calculus. We write P ↓M when P emits a message
on the channel M , that is, when P ≡ C[out(M ′, N);R] for some evaluation
context C[] that does not bind fn(M) and M =E M ′.

Definition 1 (Observational equivalence [11]). Observational equivalence ∼
is the largest symmetric relation R on closed processes such that P R Q implies:

1. if P ↓M then Q ↓M ;
2. if P → P ′ then Q → Q′ and P ′ R Q′ for some Q′;
3. C[P] R C[Q] for all evaluation contexts C.

Intuitively, a context may represent an attacker, and two processes are observa-
tionally equivalent if they cannot be distinguished by any attacker. Given a bipro-
cess P , we say that P satisfies observational equivalence when fst(P) ∼ snd(P).

A reduction P −→ Q for a biprocess P implies the corresponding processes
have reductions fst(P) −→ fst(Q) and snd(P) −→ snd(Q). However, reductions
in fst(P) and snd(P) do not necessarily correspond to any biprocess reduction.
When such a corresponding reduction does exist the processes fst(P) and snd(P)
satisfy uniformity under reduction, formally defined below.

Definition 2 (Uniformity Under Reductions (UUR)). A biprocess P sat-
isfies uniformity under reduction if:

1. fst(P) −→ Q1 implies that P −→ Q for some biprocess Q with fst(Q) ≡ Q1,
and symmetrically for snd(P) −→ Q2.

2. For all plain evaluation contexts C, for all biprocess Q, C[P] → Q implies
that Q satisfies UUR

Blanchet et al. [11] have shown that if a biprocess P satisfies uniformity under
reductions then P satisfies observational equivalence. The ProVerif software au-
tomatically verifies whether its input satisfies uniformity under reductions and
thus enables us to prove observational equivalence in some cases.

2.5 Limitations of the calculus

There are trivial equivalences (see Example 2) which the calculus of ProVerif, is
unable to prove since the definition of observational equivalence by uniformity
under reductions is too strong. We overcome this problem with data swapping.

Example 2. The equivalence out(c, a) | out(c, b) ∼ out(c, b) | out(c, a) holds triv-
ially since the processes are in fact structurally equivalent. But the correspond-
ing biprocess out(c, choice[a, b]) | out(c, choice[b, a]) does not satisfy uniformity
under reductions and therefore the equivalence cannot be proved by ProVerif.

6

Moreover, the phase semantics introduced by the calculus of ProVerif [11]
are insufficient to model protocols which require synchronisation, as the phase
semantics do not enforce that all instances of a phase must be completed prior to
phase progression. We solve this problem with the introduction of strong phases.

Both of these problems are encountered when modelling cryptographic pro-
tocols from literature. As case studies we demonstrate the suitability of our
approach by modelling the privacy properties of the electronic voting protocol
FOO [12] and Direct Anonymous Attestation (DAA) [8].

3 Extending the calculus

To overcome the limitations stated in the previous section, we extend the calculus
with strong phases and data swapping.

3.1 Extension to processes with several strong phases

Similarly to weak phases the syntax of processes is supplemented with a strong
phase prefix “strong phase t;P”, where t is a non-negative integer. A strong
phase represents a global synchronisation and t represents the global clock. The
process strong phase t;P is active only during strong phase t and a strong phase
progression may only occur once all the instructions under the previous phase
have been executed.

Example 3. Consider our earlier example (Example 1) with the use of strong
phase. Now, the process strong phase 1; out(c, a)|strong phase 2; out(c, b) cannot
output b without having previously output a.

3.2 Extension to processes with data swapping

Let us first consider the background to our approach. Referring back to Ex-
ample 2 we recall the biprocess Q = out(c, choice[a, b]) | out(c, choice[b, a])
which does not satisfy UUR. We note that fst(Q) = out(c, a) | out(c, b) and
snd(Q) = out(c, b) | out(c, a). Since out(c, b) | out(c, a) ≡ out(c, a) | out(c, b)
it seems reasonable to rewrite snd(Q) as out(c, a) | out(c, b), enabling us to
write Q as out(c, choice[a, a]) | out(c, choice[b, b]) which is semantically equiva-
lent to out(c, a) | out(c, b). Our new biprocess satisfies observational equivalence
by uniformity under reductions. It therefore seems possible (under certain cir-
cumstances) to swap values from the left to the right side of the parallel operator.
Sometimes the swap is not done initially but instead immediately after a strong
phase. To specify data swapping we introduce the special comment (**swap*)
in process descriptions, which can be seen as a proof hint.

7

3.3 Automated reasoning with ProVerif

To allow automated reasoning we describe a translator which accepts as input
processes written in our extended language. It may also include a single main
process and subprocesses of the form “let P = Q”, subject to the following
restrictions.

1. The commands strong phase t; and (**swap*) can only appear in a subpro-
cess defined using the let keyword (not in the main process);

2. Only one subprocess may contain strong phases and data swapping;
3. The subprocess defined using the let keyword that contain strong phases

and data swapping must be instantiated precisely twice in the main process.
Moreover, it must be of the form let P = α, where α is a process that is
sequential until its last strong phase, at which point it is an arbitrary process.
Formally α is given by the grammar below:

α := R
∣∣new a;α

∣∣in(M,x);α
∣∣out(M,N);α

∣∣let x = D in α
∣∣strong phase t;α

where R is an arbitrary processes without data swapping and strong phases;
4. We further require that (**swap*) may only occur at the start of a subprocess

definition or immediately after a strong phase.

The translator outputs processes in the standard language of ProVerif, which can
be automatically reasoned about by the software tool. The pseudocode of our
algorithm is presented in Figure 1. Step one of our translator makes the necessary
modifications to subprocesses and step two handles the main process. The other
parts of the translator’s input are copied to the output without changes. We
demonstrate its application with several toy examples (see Section 3.4) and two
case studies (see Sections 4 & 5).

3.4 Examples

Example 4. We begin by returning to our trivial observational equivalence:
out(c, a) | out(c, b) ∼ out(c, b) | out(c, a). As the definition of observational
equivalence by UUR is too strong the calculus, and therefore the software tool,
are unable to reason about such an equivalence. Using our data swapping syntax,
the biprocess encoding the previous equivalence is given below.

l e t P = (**swap*) out (c , x) .
process l e t x = choice [a , b] in P | l e t x = choice [b , a] in P

Our translator gives us the following biprocess, which ProVerif can successfully
prove.

l e t P = out (c , x) .
process l e t x = choice [choice [a , b] , choice [b , a]] in P |

l e t x = choice [choice [b , a] , choice [a , b]] in P

8

Step 1: We replace any subprocess declaration of the form

let P = α0; strong phase 1; α1; strong phase 2; α2; . . . ; strong phase n; αn.

with the declarations

let P0 = α0; out(pc, M0).
let P1 = α1; out(pc, M1).

...
let Pn−1 = αn−1; out(pc, Mn−1).
let Pn = αn.

where Mi is a term consisting of a tuple containing each bound name in α0, α1, . . . , αi

and the free variables in αi+1, αi+2, . . . , αn.

Step 2: We replace instance declarations in the main process of the form

let ex = eN in P | let ex = eN ′ in P

with

new pc0; new pc′0; new pc1; new pc′1; . . . ; new pcn−1; new pc′n−1; (

let ex = eN in let pc = pc0 in P0|
let ex = eN ′ in let pc = pc′0 in P0|
in(pc0, z0); in(pc′0, z

′
0); (* start strong phase 1 *) (

let M0 = z0 in let pc = pc1 in P1|
let M0 = z′0 in let pc = pc′1 in P1)|
...

in(pcn−1, zn−1); in(pc′n−1, z
′
n−1); (* start strong phase n *) (

let Mn−1 = zn−1 in Pn|
let Mn−1 = z′n−1 in Pn)

)

If α0 starts with (**swap*), we further modify the above description, by replacing

let ex = eN in with let ex = choice[eN, eN ′] in

let ex = eN ′ in with let ex = choice[eN ′, eN] in

Similarly, if αi starts with (**swap*) and 1 ≤ i ≤ n, we further modify the description

let Mi = zi in with let Mi = choice[zi, z
′
i] in

let Mi = z′i in with let Mi = choice[z′i, zi] in

Fig. 1. Translator algorithm

9

Example 5. We consider the observational equivalence shown below:

out(c, a); strong phase 1; out(c, d) | out(c, b); strong phase 1;null

∼ out(c, a); strong phase 1;null | out(c, b); strong phase 1; out(c, d)

The pair of processes are both able to output a and b. We then have a synchro-
nisation and discover the troublesome process out(c, d) | null ∼ null | out(c, d).
To allow ProVerif to prove such an equivalence we provide our translator with
the following input:

l e t P =out (c , x) ; strong phase 1 ; (**swap*) i f y=ok then out (c , d) .
process l e t x = a in l e t y = choice [ok , ko] in P |

l e t x = b in l e t y = choice [ko , ok] in P

Our translator produces the biprocess described below.

l e t P1 = out (c , x) ; out (pc , y) .
l e t P2 = i f y = ok then out (c , c) .
process new pc0 ;new pc1 ; (

l e t x = a in l e t y = choice [ok , ko] in l e t pc = pc0 in P1 |
l e t x = b in l e t y = choice [ko , ok] in l e t pc = pc1 in P1 |
in (pc0 , y0) ; in (pc1 , y1) ; (

l e t y = choice [y0 , y1] in P2 |
l e t y = choice [y1 , y0] in P2))

Example 6. As our final example we consider the following equivalence:

out(c, a1); strong phase 1; out(c, a2) | out(c, b1); strong phase 1; out(c, b2)
∼ out(c, a1); strong phase 1; out(c, b2) | out(c, b1); strong phase 1; out(c, a2)

This is similar to Example 5 with two outputs after the strong phase. Again,
thanks to our translator, we are able to conclude on such an example. The input
to our translator is shown below:

l e t P = out (c , x) ; strong phase 1 ; (**swap*)out (c , z) .

process l e t (x , z) = (a1 , choice [a2 , b2]) in P |
l e t (x , z) = (b1 , choice [b2 , a2]) in P

Our translator produces the following description.

l e t P1 = out (c , x) ; out (pc , z) .
l e t P2 = out (c , z) .

process new pc1 ;new pc2 ; (
l e t (x , z) = (a1 , choice [a2 , b2]) in l e t pc = pc1 in P1 |
l e t (x , z) = (b1 , choice [b2 , a2]) in l e t pc = pc2 in P1 |
in (pc1 , z1) ; in (pc2 , z2) ; (

l e t z = choice [z1 , z2] in P2 |
l e t z = choice [z2 , z1] in P2))

ProVerif is able to successfully prove equivalence.

10

4 E-voting protocol due to Fujioka et al.

In this section, we study the privacy property of the e-voting protocol due to
Fujioka et al. [12]. In [9], it is shown that this protocol provides fairness, eligi-
bility and privacy. However, the proof of privacy given in [9] is manual: ProVerif
is unable to prove it directly, because its ability to prove observational equiv-
alence between processes is not complete. We now demonstrate the automatic
verification of the privacy property using the approach we have developed in this
paper.

4.1 Description

The protocol involves voters, an administrator and a collector. The administra-
tor is responsible for verifying that only eligible voters can cast votes and the
collector handles the collecting and publishing of votes. The protocol requires
three strong phases.

In the first phase, the voter gets a signature on a commitment to his vote
from the administrator, i.e. m = sign(blind(commit(v, k), r), ska) where r, k are
random keys and ska is the private key of the administrator. To ensure pri-
vacy, blind signatures are used: the voter blinds his commitment with a blind-
ing factor r. At the end of this first phase, the voter unblinds m and obtains
y = sign(commit(v, k), ska), i.e. the signature of his commitment. The second
phase of the protocol is the actual voting phase. The voter sends y to the col-
lector who checks correctness of the signature and, if the test succeeds, enters
(`, x, y) onto a list as an `-th item. The last phase of the voting protocol starts,
once the collector decides that he received all votes, e.g. after a fixed deadline.
In this phase the voters reveal the random key k which allows the collector to
open the votes and publish them. The voter verifies that his commitment is in
the list and sends `, r to the collector. Hence, the collector opens the ballots. We
summarise the protocol in Figure 2.

1. V → A : id, sign((blind(commit(v, k), r)), skv)
2. A → V : sign((blind(commit(v, k), r)), ska)

strong phase
3. V → C : sign((commit(v, k)), ska)

strong phase
4. C → : `, sign((commit(v, k)), ska)
5. V → C : `, k

Fig. 2. Protocol due to Fujioka et al.

11

4.2 Modelling privacy in applied pi

Privacy properties have been successfully studied using equivalences. In the con-
text of voting protocols, the definition of privacy is rather subtle. We recall the
definition of privacy for electronic voting protocols given in [9]. A voting proto-
col guarantees ballot secrecy (privacy) whenever a process where Alice votes for
candidate v1 and Bob votes for candidate v2 is observationally equivalent to a
process where their votes are swapped, i.e. Alice votes v2 and Bob votes v1. We
denote their secret keys skva and skvb respectively. In [9], they rely on hand
proof techniques to show privacy on FOO. Our modelling of FOO in the applied
pi is similar to the one given in [9] except that we use strong phases. .

The underlying equational theory is the same as in [9] and is presented in
Process 1. We model cryptography in a Dolev-Yao style as being perfect. In
this model we can note that bit commitment (modelled by the functions commit
and open) is identical to classical symmetric key encryption. The handling of
public keys should be clear. Digital signatures are modelled as being signatures
with message recovery, i.e. the signature itself contains the signed message which
can be extracted using the checksign function. To model blind signatures we
add the pair of functions blind and unblind. These functions are again similar
to perfect symmetric key encryption and bit commitment. However, we add
a second equation which permits us to extract a signature out of a blinded
signature, when the blinding factor is known.

The main process given in Process 2 models the environment and specifies
how the other processes are combined. To establish privacy, we do not require
the authorities are honest, so we do not need to model them and we only con-
sider two voter processes in parallel. First, fresh private keys for the voters and
the administrator are generated. The corresponding public keys are then made
available to the attacker. We also output the secret key of the administrator.
We will show that the privacy property holds even in the presence of a corrupt
administrator.

fun commit /2 . (* bit commitment *)

fun open /2 . (* open bit commitment *)

fun s i gn /2 . (* digital signature *)

fun checks ign /2 . (* open digital signature *)

fun pk /1 . (* get public key from private key *)

fun b l ind /2 . (* blinding *)

fun unbl ind /2 . (* undo blinding *)

equation open (commit (m, r) , r) = m.
equation checks ign (s i gn (m, sk) , pk (sk)) = m.
equation unbl ind (b l ind (m, r) , r) = m.
equation unbl ind (s i gn (b l ind (m, r) , sk) , r) = s i gn (m, sk) .

Process 1. FOO signature and equational theory

12

l e t V =
new k ;new r ;
l e t x = commit (v , k) in
out (c , (pk (skv) , s i gn (b l ind (x , r) , skv))) ;
in (c ,m2) ;
l e t y = unbl ind (m2, r) in
i f checks ign (y , pka) = x then
strong phase 1 ; (**swap*)

out (c , y) ;
strong phase 2 ;
in (c , (l , yprime)) ;
i f yprime = y then
out (c , (l , k)) .

process
new ska ;new skva ;new skvb ;
l e t pka = pk (ska) in
out (c , (ska , pka , pk (skva) , pk (skvb))) ; (
(l e t (skv , v) = (skva , choice [v1 , v2]) in V) |
(l e t (skv , v) = (skvb , choice [v2 , v1]) in V))

Process 2. FOO model (extended syntax)

The voter process given in Process 2 models the role of a voter. The specifica-
tion follows directly from our informal description. Note that we use the strong
phase command to enforce the synchronisation of the voter processes. As men-
tioned initially in [9], the separation of the protocol into strong phases is crucial
for privacy to hold. We also provide a data swapping hint to allow our translator
to produce an output suitable for automatic verification using ProVerif.

4.3 Analysis

We use our translator to remove all instances of strong phases and handle data
swapping. Our translator produces Process 3, which is suitable for automatic
verification using ProVerif. ProVerif is able to successfully prove that attacker
cannot distinguish between a process where Alice & Bob vote for candidates
v1, v2 respectively and a process where their votes are swapped, i.e. Alice votes v2

and Bob votes v1. Hence, using our approach, we provide the first automatic
proof that this protocol satisfies privacy according to the definition given in [9].

5 Direct Anonymous Attestation (DAA)

The Direct Anonymous Attestation (DAA) scheme provides a means for remotely
authenticating a trusted platform whilst preserving the user’s privacy [8]. In [15],
two of the authors have shown that corrupt administrators are able to violate

13

l e t V1 =
new k ;new r ;
l e t x = commit (v , k) in
out (c , (pk (skv) , s i gn (b l ind (x , r) , skv))) ;
in (c ,m2) ;
l e t y = unbl ind (m2, r) in
i f checks ign (y , pka) = x then
out (pc , (y , k)) .

l e t V2 =
out (c , y) ; out (pc , (y , k)) .

l e t V3 =
in (c , (l , yprime)) ;
i f yprime = y then
out (c , (l , k)) .

process
new ska ;new skva ;new skvb ;
l e t pka = pk (ska) in
out (c , (ska , pka , pk (skva) , pk (skvb))) ;
new pc1 ;new pc2 ;new pc3 ;new pc4 ; (

(l e t (skv , v)=(skva , choice [v1 , v2]) in l e t pc=pc1 in V1) |
(l e t (skv , v)=(skvb , choice [v2 , v1]) in l e t pc=pc2 in V1) |
(in (pc1 , (y1 , k1)) ; in (pc2 , (y2 , k2)) ; (*strong phase 1*)(*swap*) (
(l e t (y , k)=choice [(y1 , k1) , (y2 , k2)] in l e t pc=pc3 in V2) |
(l e t (y , k)=choice [(y2 , k2) , (y1 , k1)] in l e t pc=pc4 in V2))) |

(in (pc3 , (y3 , k3)) ; in (pc4 , (y4 , k4)) ; (*strong phase 2*) (
(l e t (y , k)=(y3 , k3) in V3) |
(l e t (y , k)=(y4 , k4) in V3))))

Process 3. Translated FOO model (ProVerif syntax)

the privacy of the host. Using our extended calculus we are now able to provide
a formal and automatic proof that the rectified protocol proposed in [15] satisfies
its privacy requirements. We start with a short description of the protocol. For
a more complete description please refer to [15, 8].

5.1 Description

The protocol can be seen as a group signature scheme without the ability to
revoke anonymity and an additional mechanism to detect rogue members. In
broad terms the host contacts an issuer and requests membership to a group. If
the issuer wishes to accept the request, it grants the host/TPM an attestation
identity credential. The host is now able to anonymously authenticate itself as a
group member to a verifier with respect its credential.

14

The protocol is initiated when a host wishes to obtain a credential. This is
known as the join protocol. The TPM creates a secret f value and a blinding
factor v′. It then constructs the blind message U := blind(f, v′) and NI := ζf

I ,
where ζI := hash(0‖bsnI). The U and NI values are submitted to the issuer I.
The issuer creates a random nonce value ne, encrypts it with the public key
PKEK of the host’s TPM and returns the encrypted value. The TPM decrypts
the message, revealing ne, and returns hash(U‖ne). The issuer confirms that the
hash is correctly formed. The issuer generates a nonce ni and sends it to the host.
The host/TPM constructs a signature proof of knowledge that the messages U
and NI are correctly formed. The issuer verifies the proof and generates a blind
signature on the message U . It returns the signature along with a proof that a
covert channel has not been used. The host verifies the signature and proof and
the TPM unblinds the signature revealing a secret credential v (the signed f).

Once the host has obtained an anonymous attestation credential from the
issuer it is able to produce a signature proof of knowledge of attestation on a
message m. This is known as the sign/verify protocol. The verifier sends nonce nv

to the host. The host/TPM produce a signature proof of knowledge of attestation
on the message (nt‖nv‖b‖m), where nt is a nonce defined by the TPM and b is a
parameter. In addition the host computes NV := ζf , where ζ := hash(1‖bsnV).
Intuitively if a verifier is presented with such a proof it is convinced that it is
communicating with a trusted platform and the message is genuine. A message
sequence diagram describing the protocol is presented in Figure 3.

1. H → I : U, NI

2. I → H : {ne}PKEK

3. H → I : hash(U‖ne)
4. I → H : ni

5. H → I : nt, SPK{(f, v′) : U ≡ blind(f, v′) ∧NI ≡ ζf
I }(nt‖ni)

6. H → I : nh

7. I → H : C, SPK{(SKI) : C ≡ sign(U, SKI)}(nh)
strong phase

8. V → H : nv

9. H → V : ζ, NV , nt, m, SPK{(f, v) : v ≡ sign(f, SKI) ∧NV ≡ ζf}(nt‖nv‖b‖m)

Fig. 3. DAA protocol

5.2 Modelling privacy in applied pi

The DAA protocol satisfies privacy whenever a process where Alice interacts
with the verifier is observationally equivalent to when Bob interacts with the
verifier. For privacy we require that both Alice and Bob have completed the join
protocol.

15

Signature and equational theory. The signature and equational theory can be
seen in Process 4. The modelling of digital signatures, blind signatures and pub-
lic keys is the same as in FOO, we omit their presentation. The handling of en-
cryption, hash functions and exponential arithmetic should be clear. The DAA
protocol makes extensive use of signature proofs of knowledge (SPK) to prove
knowledge of and relations among discrete logarithms. We will discuss our for-
malism with an example. The signature proof of knowledge SPK{(α, β) : x =
gα ∧ y = hβ}(m) denotes a signature proof of knowledge on the message m
that x, y were constructed correctly. This leads us to define function spk/3 to
construct an SPK. The first argument contains a tuple of secret values known
to the prover α, β. The second argument consists of a tuple of the values on
which the prover is claiming to have constructed correctly x, y, such that x = gα

and y = hβ . Finally the third argument is the message m on which the prover
produces a signature on. Verifying the correctness of a SPK is specific to its
construction, thus we must require a function checkspk for each SPK that the
protocol uses. To verify the SPK produced in the aforementioned example the
verifier must be in possession of the SPK itself and x, y, g, h,m. We define the
equation: checkspk(spk((α, β), (gα, hβ),m), gα, hβ , g, h,m) = ok. A verifier can
now check a SPK using an if statement. We define spk, checkspk1, checkspk2
and checkspk3 in the manner previously discussed.

fun exp /2 . (* exponential arithmetic *)

fun hash /1 . (* one way hash function *)

fun enc /2 . (* public key encryption *)

fun dec /2 . (* public key decryption *)

fun spk /3 . (* signature proof of knowledge (spk) *)

fun checkspk1 /5 . (* check spk created by DAAJoin ,step 4 *)

fun checkspk2 /5 . (* check spk created by DAAJoin ,step 6 *)

fun checkspk3 /5 . (* check spk created by DAASign *)

equation dec (enc (m, pk (sk)) , sk) = m.
equation checkspk1 (spk ((f , v ’) , (b l ind (f , v ’) , exp (zeta I , f)) ,m) ,

b l ind (f , v ’) , exp (zetaI , f) , ze ta I ,m) = ok .
equation checkspk2 (spk (skI , s i gn (U, sk I) ,m) ,

s i gn (U, sk I) ,U, pk (sk I) ,m) = ok .
equation checkspk3 (spk (f , (s i gn (f , sk I) , exp (zeta , f)) ,m) ,

exp (zeta , f) , zeta , pk (sk I) ,m) = ok .

Process 4. DAA signature and equational theory

Modelling the DAA protocol. As in FOO, the main process (Process 5) models
the environment and specifies how the other processes are combined. First, fresh
secret keys for the TPMs, the issuer and the verifier are generated using the
restriction operator. We also generate two DAASeed values. The public keys are

16

then sent on a public channel, i.e. they are made available to the intruder. We
also output the secret key of the verifier and issuer since the privacy property
should be preserved even if they are corrupt. Next we input the basenames
bsnI , bsnV of the issuer and verifier. Then we instantiate two instances of the
DAA protocol with the necessary parameters.

Our encoding of the DAA protocol (see Process 5) follows directly from
our informal description. Note that we use the strong phase and data swapping
commands introduced by our extension to the calculus to ensure synchronisation.
The two instances of the DAA processes must first execute all instructions of
DAAJoin before moving onto DAASign. The separation of the protocol into
strong phases is crucial for privacy to hold.

5.3 Analysis

We use our translator to remove all instances of strong phases from our encoding
(Process 5) and produce code suitable for input to ProVerif. Our translator pro-
duces Process 6 which permits the automatic verification of the privacy property
using ProVerif. We are also able to detect the vulnerability in the original DAA
protocol [15] and prove the optimisation presented in [15].

6 Conclusion

In this paper we have extended the class of equivalences which ProVerif is able to
automatically verify. More specifically we able to reason about processes which
require data swapping and/or strong phases. Using the approach developed we
are to automatically verify the privacy properties of the electronic voting protocol
FOO and the Direct Anonymous Attestation scheme. In the future we aim to
generalise our translation algorithm and develop a software implementation.

References

1. Lowe, G.: An attack on the Needham-Schroeder public-key authentication proto-
col. Information Processing Letters 56(3) (1995) 131–133

2. Mukhamedov, A., Ryan, M.D.: Fair Multi-party Contract Signing using Private
Contract Signatures. Information & Computation (2007)

3. Chadha, R., Kremer, S., Scedrov, A.: Formal Analysis of Multi-Party Fair Ex-
change Protocols. In Focardi, R., ed.: 17th IEEE Computer Security Foundations
Workshop, Asilomar, USA, IEEE Computer Society Press (2004) 266–279

4. Gollmann, D.: Analysing Security Protocols. In: FASec. (2002) 71–80
5. Clark, J., Jacob, J.: A Survey of Authentication Protocol Literature.

http://www.cs.york.ac.uk/˜jac/papers/drareviewps.ps (1997)
6. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.

In: Eurocrypt. Volume 1807 of Lecture Notes in Computer Science. (2000) 539–556
7. Garay, J.A., Jakobsson, M., MacKenzie, P.D.: Abuse-Free Optimistic Contract

Signing. In: Crypto’99: Advances in Cryptology. Volume 1666 of Lecture Notes in
Computer Science. (1999) 449–466

17

l e t DAA =
new vPrime ; (* TPM requests attestation *)

l e t f = hash ((DAASeed , hash (pkI) , cnt , ze ro)) in
l e t U = bl ind (f , vPrime) in
l e t z e t a I = hash ((zero , bsnI)) in
l e t NI = exp (zetaI , f) in
out (c , (U, NI)) ;

in (c , encNe) ; (* Authentication *)

l e t ne = dec (encNe , skH) in
out (c , hash ((U, ne))) ;

in (c , n i) ; (* SPK on U,NI values *)

new nt ;
out (c , (nt , spk ((f , vPrime) , (U, NI) , (ni , nt)))) ;

new nh ; (* Receive/verify blind signature from issuer *)

out (c , nh) ;
in (c , (b l indS ig , spk2)) ;
i f checkspk2 (spk2 , b l indS ig ,U, pkI , nh) = ok then
l e t v = unbl ind (b l indS ig , vPrime) in

strong phase 1 ;
(**swap*)

i f dos ign = ok then

in (c , (nv ,m)) ; (* DAASign *)

new nt ;
l e t b = one in
l e t zeta = hash ((one , bsnV)) in
l e t NV = exp (zeta , f) in
out (c , (zeta ,NV, nt , b , spk (f , (v ,NV) , (nt , nv , b ,m)))) .

process
new skH1 ;new skH2 ;new sk I ;
new DAASeed1 ;new DAASeed2 ;
l e t pkI = pk (sk I) in
out (c , (pk (skH1) , pk (skH2) , pkI , sk I)) ;
in (c , (bsnI , bsnV)) ; (
(l e t (skH ,DAASeed , cnt) = (skH1 ,DAASeed1 , ze ro) in

l e t dos ign = choice [ok , ko] in DAA) |
(l e t (skH ,DAASeed , cnt) = (skH2 ,DAASeed2 , ze ro) in

l e t dos ign = choice [ko , ok] in DAA))

Process 5. DAA model (extended syntax)

18

l e t DAAJoin =
new vPrime ; (* TPM requests attestation *)

l e t f = hash ((DAASeed , hash (pkI) , cnt , ze ro)) in
l e t U = bl ind (f , vPrime) in
l e t z e t a I = hash ((zero , bsnI)) in
l e t NI = exp (zetaI , f) in
out (c , (U, NI)) ;

in (c , encNe) ; (* Authentication *)

l e t ne = dec (encNe , skH) in
out (c , hash ((U, ne))) ;

in (c , n i) ; (* SPK on U,NI values *)

new nt ;
out (c , (nt , spk ((f , vPrime) , (U, NI) , (ni , nt)))) ;

new nh ; (* Receive/verify blind signature from issuer *)

out (c , nh) ;
in (c , (b l indS ig , spk2)) ;
i f checkspk2 (spk2 , b l indS ig ,U, pkI , nh) = ok then
l e t v = unbl ind (b l indS ig , vPrime) in

out (pc , (f , v , dos ign)) .

l e t DAASign =
i f dos ign = ok then

in (c , (nv ,m)) ;
new nt ;
l e t b = one in
l e t zeta = hash ((one , bsnV)) in
l e t NV = exp (zeta , f) in
l e t spk3 = spk (f , (v ,NV) , (nt , nv , b ,m)) in
out (c , (zeta ,NV, nt , b , spk3)) .

process
new skH1 ;new skH2 ;new sk I ;
new DAASeed1 ;new DAASeed2 ;
l e t pkI = pk (sk I) in
out (c , (pk (skH1) , pk (skH2) , pkI , sk I)) ;
in (c , (bsnI , bsnV)) ;
new pc1 ;new pc2 ; (

(l e t (skH ,DAASeed , cnt)=(skH1 ,DAASeed1 , ze ro) in
l e t dos ign=choice [ok , ko] in l e t pc=pc1 in DAAJoin) |

(l e t (skH ,DAASeed , cnt)=(skH2 ,DAASeed2 , ze ro) in
l e t dos ign=choice [ko , ok] in l e t pc=pc2 in DAAJoin) |

(in (pc1 , (f1 , v1 , d1)) ; in (pc2 , (f2 , v2 , d2)) ; (*s-phase 1*)(*swap*) (
(l e t (f , v , dos ign)=choice [(f1 , v1 , d1) , (f2 , v2 , d2)] in DAASign) |
(l e t (f , v , dos ign)=choice [(f2 , v2 , d2) , (f1 , v1 , d1)] in DAASign)

)))

Process 6. Translated DAA model (ProVerif syntax)
19

8. Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: CCS
’04: 11th ACM conference on Computer and communications security, New York,
United States of America, ACM Press (2004) 132–145

9. Kremer, S., Ryan, M.D.: Analysis of an Electronic Voting Protocol in the Applied
Pi Calculus. In: ESOP’05: Proceedings of the European Symposium on Program-
ming. Volume 3444 of Lecture Notes in Computer Science. (2005) 186–200

10. Delaune, S., Kremer, S., Ryan, M.: Coercion-Resistance and Receipt-Freeness in
Electronic Voting. In: CSFW ’06: Proceedings of the 19th IEEE workshop on
Computer Security Foundations, IEEE Computer Society (2006) 28–42

11. Blanchet, B., Abadi, M., Fournet, C.: Automated Verification of Selected Equiva-
lences for Security Protocols. Journal of Logic and Algebraic Programming (2007)

12. Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large
Scale Elections. In: ASIACRYPT ’92: Proceedings of the Workshop on the Theory
and Application of Cryptographic Techniques, London, Springer (1993) 244–251

13. Delaune, S., Klay, F., Kremer, S.: Spécification du protocole de vote électronique.
Technical Report 6, projet RNTL PROUVÉ (November 2005) 19 pages.

14. Backes, M., Maffei, M., Unruh, D.: Zero-Knowledge in the Applied Pi-calculus and
Automated Verification of the Direct Anonymous Attestation Protocol. Cryptology
ePrint Archive: Report 2007/289 (July 2007)

15. Smyth, B., Ryan, M., Chen, L.: Direct Anonymous Attestation (DAA): Ensuring
privacy with corrupt administrators. In: ESAS’07: Fourth European Workshop
on Security and Privacy in Ad hoc and Sensor Networks. Volume 4572 of Lecture
Notes in Computer Science. (2007) 218–231

16. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, New York, USA, ACM Press (2001) 104–115

20

