
Attacking and fixing Helios: An analysis of ballot secrecy

Véronique Cortier
Loria, CNRS & INRIA Nancy Grand Est, France

Ben Smyth
Loria, CNRS & INRIA Nancy Grand Est, France

Abstract—Helios 2.0 is an open-source web-based end-to-
end verifiable electronic voting system, suitable for use in low-
coercion environments. In this paper, we analyse ballot secrecy
and discover a vulnerability which allows an adversary to
compromise the privacy of voters. This vulnerability has been
successfully exploited to break privacy in a mock election using
the current Helios implementation. Moreover, the feasibility
of an attack is considered in the context of French legislative
elections and, based upon our findings, we believe it constitutes
a real threat to ballot secrecy in such settings. Finally, we
present a fix and show that our solution satisfies a formal
definition of ballot secrecy using the applied pi calculus.

Keywords-Applied Pi Calculus, Attack, Ballot Independence,
Ballot Secrecy, Electronic Voting, Helios, Privacy.

I. INTRODUCTION

Paper-based elections derive privacy properties from phys-
ical characteristics of the real-world, for example, the in-
distinguishability of an individual’s ballot from an arbitrary
ballot, and the inability of a coercer to collaborate with
a voter inside a polling booth. Replicating these attributes
in a digital setting has proven to be difficult and, hence,
the provision of electronic voting systems which ensure the
privacy of voters is an active research topic [1], [2], [3].

Informally, privacy for electronic voting systems is char-
acterised by the following properties [4], [5], [6]:
• Ballot secrecy. A voter’s vote is not revealed to anyone.
• Receipt freeness. A voter cannot gain information

which can be used to prove, to a coercer, how she voted.
• Coercion resistance. A voter cannot collaborate, with a

coercer, to gain information which can be used to prove
how she voted.

Other desirable properties of electronic voting systems in-
clude [3], [7], [8]:
• Fairness: All votes are independently cast.
• Individual verifiability: A voter can check that her own

ballot is published on the election’s bulletin board.
• Universal verifiability: Anyone can check that all the

votes in the election outcome correspond to ballots
published on the election’s bulletin board.

The fairness property prohibits the voting system from
influencing a voter’s vote; more formally, this requires
that observation of the voting system (that is, observing
interaction between participants) does not leak information
that may affect a voter’s decision. One aspect of fairness
is ballot independence, which based upon [9, §1.1] can be

informally stated as: observing another voter’s interaction
with the election system does not allow a voter to cast
a related vote. The individual and universal verifiability
properties (also called end-to-end verifiability [3], [10], [11],
[7], [12]) allow voters and election observers to verify –
independently of the hardware and software running the
election – that votes have been recorded, tallied and declared
correctly. In this paper, we analyse ballot secrecy in Helios
2.0 [13].

Helios is an open-source web-based electronic voting
system. The scheme is claimed to satisfy ballot secrecy [13],
but the nature of remote voting makes the possibility of
satisfying stronger privacy properties difficult, and Helios
does not satisfy receipt freeness nor coercion resistance. In
addition to ballot secrecy, the system provides end-to-end
verifiability (cf. [8], [14] and [15, Chapter 3] for an analysis
of end-to-end verifiability in Helios). Helios is particularly
significant due to its real-world deployment: the Interna-
tional Association of Cryptologic Research used Helios to
elect its board members [16], following a successful trial in
a non-binding poll [17]; the Catholic University of Louvain
adopted the system to elect the university president [13];
and Princeton University used Helios to elect the student
vice president [18].

Formal definitions of ballot secrecy have been introduced
in the context of the applied pi calculus by Delaune, Kremer
& Ryan [4], [5], [19], [20] and Backes, Hriţcu & Maffei [6].
These privacy definitions consider two voters A, B and two
candidates t, t′. Ballot secrecy is captured by the assertion
that an adversary (controlling arbitrary many dishonest vot-
ers) cannot distinguish between a situation in which voter
A votes for candidate t and voter B votes for candidate t′,
from another situation in which A votes t′ and B votes t.
This can be expressed by the following equivalence.

A(t) | B(t′) ≈l A(t′) | B(t)

These formal definitions of ballot secrecy have been used by
their respective authors to analyse the electronic voting pro-
tocols due to: Fujioka, Okamoto & Ohta [1], Okamoto [2],
Lee et al. [21], and Juels, Catalano & Jakobsson [3], [22],
[23]. It therefore seems natural to check whether Helios
satisfies ballot secrecy as well.

Contribution: Our analysis of Helios reveals an attack
which violates ballot secrecy. The attack exploits the sys-
tem’s lack of ballot independence, and works by replaying

a voter’s ballot or a variant of it (without knowing the
vote contained within that ballot). Replaying a voter’s ballot
immediately violates ballot secrecy in an election with three
voters. For example, consider the electorate Alice, Bob, and
Mallory; if Mallory replays Alice’s ballot, then Mallory can
reveal Alice’s vote by observing the election outcome and
checking which candidate obtained at least two votes. The
practicality of this attack has been demonstrated by violating
privacy in a mock election using the current Helios imple-
mentation. Furthermore, the vulnerability can be exploited
in more realistic settings and, as an illustrative example,
we discuss the feasibility of the attack in French legislative
elections. This case study suggests there is a plausible threat
to ballot secrecy. We also propose a variant of the attack
which abuses the malleability of ballots to ensure replayed
ballots are distinct: this makes identification of replayed
ballots non-trivial (that is, checking for exact duplicates
is insufficient). Nonetheless, we fix the Helios protocol
by identifying and discarding replayed ballots. We believe
this solution is particular well-suited because it maintains
Benaloh’s principle of ballot casting assurance [24], [25]
and requires a minimal extension to the Helios code-base.
Finally, we show that the revised scheme satisfies a formal
definition of ballot secrecy using the applied pi calculus.

Related work: The concept of independence was in-
troduced by Chor et al. [26] and the possibility of compro-
mising security properties due to lack of independence has
been considered, for example, by [27], [28], [29], [30]. In
the context of electronic voting, Gennaro [9] demonstrates
that the application of the Fiat-Shamir heuristic in the Sako-
Kilian electronic voting protocol [31] violates ballot inde-
pendence, and Wikström [32], [33] studies non-malleability
for mixnets to achieve ballot independence. By comparison,
we focus on the violation of ballot secrecy rather than
fairness, and exploit the absence of ballot independence to
compromise privacy. Similar results have been shown against
mixnets [34].

Estehghari & Desmedt [35] claim to present an attack
which undermines privacy and end-to-end verifiability in
Helios. However, their attack is dependent on compromising
a voter’s computer, a vulnerability which is explicitly ac-
knowledged by the Helios specification [13]: “a specifically
targeted virus could surreptitiously change a user’s vote
and mask all of the verifications performed via the same
computer to cover its tracks.” Accordingly, [35] represents
an exploration of known vulnerabilities rather than an attack.

Langer et al. [36], [37] and Volkamer & Grimm [38] also
study privacy in Helios. Langer et al. propose a taxonomy of
informal privacy requirements [36], [37], [39] to facilitate a
more fine-grained comparison of electronic voting systems;
this framework is used to analyse Helios and the authors
claim ballot secrecy is satisfied if the adversary only has
access to public data [36], [37]. Volkamer & Grimm in-
troduce the k-resilience metric [38], [40] to calculate the

number of honest participants required for ballot secrecy
in particular scenarios; this framework is used to analyse
Helios and the authors claim ballot secrecy is satisfied if
the software developers are honest and the key holders do
not collude [38]. Contrary to these results, we show an
attack against privacy. Our work highlights the necessity
for rigorous mathematical analysis techniques for security
protocols; in particular, we believe the erroneous results
reported by Langer et al. were due to the use of informal
methods, and the approach by Volkamer & Grimm failed
because only some particular scenarios were considered.

Structure of this paper: Section II presents the Helios
electronic voting scheme. (We remark that this is the first
cryptographic description of the Helios protocol in the
literature and, hence, is an additional contribution of this
paper.) Section III describes our attack and some variants,
in addition to a study of its feasibility in the context of
French legislative elections. We propose several solutions for
recovering privacy in Section IV and prove that our adopted
solution formally satisfies ballot secrecy in Section V.

II. BACKGROUND: HELIOS 2.0

Helios exploits the additive homomorphic [41], [42], [43]
and distributed decryption [44], [45] properties of ElGa-
mal [46]. We will recall these cryptographic details before
presenting the Helios protocol.

A. Additive homomorphic ElGamal

Given cryptographic parameters (p, q, g) and a number
n ∈ N of trustees, where p and q are large primes such that
q | p− 1 and g is a generator of the multiplicative group Z∗p
of order q, the following operations are defined by ElGamal.

Distributed key generation: Each trustee i ∈ n selects a
private key share xi ∈R Z∗q and computes a public key share
hi = gxi mod p. The public key is h = h1 · . . . · hn mod p.

Encryption: Given a message m and a public key h,
select a random nonce r ∈R Z∗q and derive the ciphertext
(a, b) = (gr mod p, gm · hr mod p).

Re-encryption: Given a ciphertext (a, b) and public key
h, select a random nonce r′ ∈R Z∗q and derive the re-
encrypted ciphertext (a′, b′) = (a·gr′ mod p, b·hr′ mod p).

Homomorphic addition: Given two ciphertexts (a, b)
and (a′, b′), the homomorphic addition of plaintexts is
computed by multiplication (a · a′ mod p, b · b′ mod p).

Distributed decryption: Given a ciphertext (a, b), each
trustee i ∈ n computes the partial decryption ki = axi . The
plaintext m = loggM is recovered from M = b/(k1 · . . . ·
kn) mod p.
The computation of a discrete logarithm loggM is hard in
general. However, if M is chosen from a restricted domain,
then the complexity is reduced; for example, if M is an
integer such that 0 ≤ M ≤ n, then the complexity is O(n)
by linear search or O(

√
n) using the baby-step giant-step

algorithm [47] (see also [48, §3.1]).

For secrecy, each trustee i ∈ n must demonstrate knowl-
edge of a discrete logarithm logg hi, that is, they proof that
hi has been correctly constructed; this prevents, for example,
a trustee constructing their public key share hi = h. For
integrity of decryption, each trustee i ∈ n must demonstrate
equality between discrete logarithms logg hi and loga ki;
this prevents, for example, a trustee constructing the public
key share hi = gm+xi and providing the partial decryption
ki = axi . In addition, the voter must demonstrate that a valid
vote has been encrypted. These proofs can be achieved using
signatures of knowledge (see Appendix A for details).

B. Protocol description

An election is created by naming an election officer,
selecting a set of trustees, and generating a distributed public
key pair. The election officer publishes, on the bulletin board,
the public part of the trustees’ key (and proof of correct
construction), the candidate list t̃ = (t1, . . . , tl)∪{ε} (where
ε represents a vote of abstention), and the list of eligible
voters ĩd = (id1, . . . , idn); the officer also publishes the
election fingerprint, that is, the hash of these parameters.
Informally, the steps that participants take during a run of
Helios are as follows.

1) The voter launches a browser script that downloads
the election parameters and recomputes the election
fingerprint. The voter should verify that the fingerprint
corresponds to the value published on the bulletin
board. (This ensures that the script is using the
trustees’ public key; in particular, it helps prevent
encrypting a vote with an adversary’s public key. Such
attacks have been discussed in the context of Direct
Anonymous Attestation by Rudolph [49]; although,
the vulnerability was discounted, in the trusted com-
puting setting, by Leung, Chen & Mitchell [50].)

2) The voter inputs her vote v ∈ t̃ to the browser script,
which creates a ballot consisting of her vote encrypted
by the trustees’ public key, and a proof that the ballot
represents a permitted vote (this is needed because the
ballots are never decrypted individually, in particular,
it prevents multiple votes being encoded as a single
ballot). The ballot is displayed to the voter.

3) The voter can audit the ballot to check if it really
represents a vote for her chosen candidate; if she
decides to do this, then the script provides her with
the random data used in the ballot creation. She can
then independently reconstruct her ballot and verify
that it is indeed well-formed. The script provides some
practical resistance against vote selling by refusing to
cast audited ballots. See Benaloh [24], [25] for further
details on ballot auditing.

4) When the voter has decided to cast her ballot, the
script submits it to the election officer. The election
officer authenticates the voter and checks that she
is eligible to vote. The election officer also verifies

Figure 1 Ballot construction by the browser script
Input: Cryptographic parameters (p, q, g), public key h,

candidate list t̃ = (t1, . . . , tl) ∪ {ε} and vote v.
Output: Encrypted vote (a1, b1), . . . , (al, bl), signatures of

knowledge (ā1, b̄1, c̄1, s̄1, ā
′
1, b̄
′
1, c̄
′
1, s̄
′
1), . . . , (āl,

b̄l, c̄l, s̄l, ā
′
l, b̄
′
l, c̄
′
l, s̄
′
l) and signature of knowledge

(ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′).
1) If v 6∈ t̃ then the script terminates.
2) Encode the vote v as a bitstring. For all 1 ≤ i ≤ l, let

mi =

{
1 if v = ti
0 otherwise

3) The bitstring representing the vote is encrypted. For
all 1 ≤ i ≤ l, let

(ai, bi) = (gri mod p, gmi · hri mod p)

where ri ∈R Z∗q .
4) For all 1 ≤ i ≤ l, let (āi, b̄i, c̄i, s̄i, ā

′
i, b̄
′
i, c̄
′
i, s̄
′
i)

be a signature of knowledge demonstrating that the
ciphertext (ai, bi) contains either 0 or 1, that is, each
candidate can receive at most one vote.

5) Let (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) be a signature of knowledge
demonstrating that the ciphertext (a1·. . .·al, b1·. . .·bl)
contains either 0 or 1, that is, at most one candidate
receives one vote.

the proof and publishes the ballot, appended with the
voter’s identity id, on the bulletin board. (In practice,
the election officer also publishes the hash of the
ballot, we omit this detail for brevity.)

5) Individual voters can check that their ballots appear
on the bulletin board and, by verifying the proof,
observers are assured that ballots represent permitted
votes.

6) After some predefined deadline, the election officer
homomorphically combines the ballots and publishes
the encrypted tally on the bulletin board. Anyone can
check that tallying is performed correctly.

7) Each of the trustees publishes a partial decryption
of the encrypted tally, together with a signature of
knowledge proving the partial decryption’s correct
construction. Anyone can verify these proofs.

8) The election officer decrypts the tally and publishes
the result. Anyone can check this decryption.

Formally, Step 2 is defined in Figure 1. (For simplicity
the ballot construction algorithm in Figure 1 considers a vote
v ∈ t̃, this can be generalised [13] to consider a vote ṽ ⊆ t̃.)
Checking voter eligibility (Step 4) is beyond the scope of
Helios and Adida et al. [13] propose the use of existing
infrastructure. The remaining steps follow immediately from
the application of cryptographic primitives (see Section II-A
for details).

C. Software implementation

Helios 3.0 is an extension of Helios 2.0 which adds
numerous practical features, including: integration of authen-
tication with various web-services (for example, Facebook,
GMail and Twitter), bulk voter registration using pre-existing
electoral rolls, and simplification of administration with
multiple trustees. Helios 3.0 has been implemented and is
publicly available: http://heliosvoting.org/.

III. ATTACKING BALLOT SECRECY

Ballot secrecy means a voter’s vote is not revealed to
anyone. We show that the Helios protocol does not satisfy
this definition of ballot secrecy, by presenting an attack
which allows an adversary to reveal a voter’s vote. Moreover,
we will show that formal definitions of ballot secrecy [4],
[19], [6] are also violated.

Intuitively, an adversary may identify a voter’s ballot on
the bulletin board (using the voter’s id) and recast this ballot
by corrupting dishonest voters. The multiple occurrences
of the voter’s ballot will leak information in the tally and
the adversary can exploit this knowledge to violate the
voter’s privacy. An informal description of the attack will
now be presented in the case of three eligible voters and
Section III-C considers a more realistic setting. (A formal
analysis appears in Section IV.)

A. Attack description

Let us consider an election with candidates t1, . . . , tl and
three eligible voters who have identities id1, id2 and id3.
Suppose that voters id1, id2 are honest and id3 is a dishonest
voter controlled by the adversary. Further assume that the
honest voters have cast their ballots. The bulletin board
entries are as follows:

id1, ciph1, spk1, spk
′
1

id2, ciph2, spk2, spk
′
2

where for i ∈ {1, 2} we have

ciphi = (ai,1, bi,1), . . . , (ai,l, bi,l)
spki = (āi,1, b̄i,1, c̄i,1, s̄i,1, ā

′
i,1, b̄

′
i,1, c̄

′
i,1, s̄

′
i,1),

. . . , (āi,l, b̄i,l, c̄i,l, s̄i,l, ā
′
i,l, b̄

′
i,l, c̄

′
i,l, s̄

′
i,l)

spk′i = (āi, b̄i, c̄i, s̄i, ā
′
i, b̄
′
i, c̄
′
i, s̄
′
i)

The value ciphi is the ith voter’s encrypted vote, spki
demonstrates that ciphertexts (ai,1, bi,1), . . . , (ai,l, bi,l) con-
tain either 0 or 1, and spk′i demonstrates that (ai,1 · . . . ·
ai,l, bi,1 · . . . · bi,l) contains either 0 or 1.

Exploiting the absence of ballot independence: The
adversary observes the bulletin board and selects ciphk,
spkk, spk

′
k such that idk is the voter whose privacy will

be compromised, where k ∈ {1, 2}. The adversary submits
the ballot ciphk, spkk, spk′k and it immediately follows that
the bulletin board is composed as follows:

id1, ciph1, spk1, spk
′
1

id2, ciph2, spk2, spk
′
2

id3, ciphk, spkk, spk
′
k

It is trivial to see that each bulletin board entry represents
a permitted vote; that is, spk1, spk′1, spk2, spk

′
2, spkk, spk

′
k

all contain valid signatures of knowledge.
We have informally shown that Helios does not satisfy

ballot independence (observing another voter’s interaction
with the election system allows a voter to cast the same
vote), and this will now be exploited to violate privacy.

Violating privacy: The homomorphic addition of bal-
lots reveals the encrypted tally (a1,1 · a2,1 · ak,1, b1,1 · b2,1 ·
bk,1), . . . , (a1,l · a2,l · ak,l, b1,l · b2,l · bk,l) and, given the
partial decryptions, these ciphertexts can be decrypted to
reveal the number of votes for each candidate. Since there
will be at least two votes for the candidate voter idk voted
for, the voter’s vote can be revealed and hence privacy is
not preserved. Moreover, the vote of the remaining honest
voter will also be revealed.
A video demonstrating the attack against the Helios 3.0
implementation has been produced [51].

B. Variants exploiting malleability and key reuse

In the aforementioned attack description, the ballots cast
by two voters are identical which may result in the detection
of an attack. For a covert attack, the adversary may prefer
to cast a distinct ballot. This can be achieved by exploiting
the malleability of ballots. In particular, given a valid ballot

(a1, b1), . . . , (al, bl),

(ā1, b̄1, c̄1, s̄1, ā
′
1, b̄
′
1, c̄
′
1, s̄
′
1), . . . ,

(āl, b̄l, c̄l, s̄l, ā
′
l, b̄
′
l, c̄
′
l, s̄
′
l),

(ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) (B1)

the following ballots are also valid

(a1, b1), . . . , (al, bl),

(ā1, b̄1, c̄1, s̄1 + q, ā′1, b̄
′
1, c̄
′
1, s̄
′
1 + q), . . . ,

(āl, b̄l, c̄l, s̄l + q, ā′l, b̄
′
l, c̄
′
l, s̄
′
l + q),

(ā, b̄, c̄, s̄+ q, ā′, b̄′, c̄′, s̄′ + q) (B2)

(aπ(1), bπ(1)), . . . , (aπ(l), bπ(l)),

(āπ(1), b̄π(1), c̄π(1), s̄π(1), ā
′
π(1), b̄

′
π(1), c̄

′
π(1), s̄

′
π(1)), . . . ,

(āπ(l), b̄π(l), c̄π(l), s̄π(l), ā
′
π(l), b̄

′
π(l), c̄

′
π(l), s̄

′
π(l)),

(ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) (B3)

where π is an arbitrary permutation over {1, . . . , l}. Bal-
lot B2 adds q to the response components of Ballot B1,
this changes the ballot but not the vote. (It is also possible
to modify a subset of the response components.) However,
this might be considered an implementation bug in Helios

3.0, rather than a theoretical attack, because the ballots
are identical if considered as group elements. Replaying
Ballot B3 has the advantage of casting a theoretical distinct
ballot, since Ballot B3 represents a vote for a different
candidate (with the exception of an abstention vote), and
it is possible to compromise ballot secrecy in elections with
three voters without abstention votes; however, more than
one (modified) ballot may be required in elections with ab-
stention votes. This variant of our attack also demonstrates a
further violation of ballot independence in Helios: observing
another voter’s interaction with the election system allows a
voter to cast a different vote (for example, a voter can cast a
distinct vote from their boss). Both variants of the attack are
particularly useful when the bulletin board includes the hash
of the ballot (for example, in the Helios 3.0 implementation),
rather than the complete ballot, because the hashes will be
distinct.

An adversary may replay ballots in different elections,
when the trustees’ public key is reused and the candidate
lists for each election are of equal length. This variant of
the attack can be avoided if distinct keys are used for each
election.

The variants of our attack in this section have all been
successfully launched against the Helios 3.0 implementation.

C. Generalised attack and French election case study

Our attack demonstrates that the ballot of an arbitrary
voter can be replayed by any other voter. In general, this does
not reveal the voter’s vote; but, some information is leaked,
and colluding voters can replay sufficiently many ballots to
leak the voter’s vote. We will now discuss the feasibility
of compromising ballot secrecy in a real-world election,
focusing on the cost of an attack in French legislative
elections, where each district elects a representative for the
French National Assembly. Districts have several polling
stations and each polling station individually announces its
tally [52]; these tallies are published in local newspapers.
The publication of tallies is typical of French elections at
all levels; for example, from the election of mayor, to the
presidential election.

In this (standard) voting configuration, an adversary can
violate the ballot secrecy of a given voter by corrupting
voters registered at the same polling station (for example,
a coalition of neighbours or a family). The corrupted voters
replay the ballot of the voter under attack, as previously
explained. The motivation for restricting the selection of cor-
rupted voters to the same polling station is twofold. Firstly,
fewer corrupt voters are required to significantly influence
the tally of an individual polling station (in comparison to
influencing the election outcome). Secondly, it is unlikely
to change the district’s elected representative, because a
candidate will receive only a few additional votes in the
district; it follows that coercing voters to sacrifice their
vote, for the purposes of the attack, should be easier. In

Party Tally
PS 4120
UMP 3463
FN 1933
Europe Eco. 1921
Front de gauche 880
NPA 697
MODEM 456
Debout la République 431
Alliance école 193
LO 156
Émergence 113
Liste chrétienne 113

Table I
2010 LEGISLATIVE ELECTION RESULTS IN AULNAY-SOUS-BOIS [53]

the remainder of this section, we discuss how many corrupt
voters are required to violate ballot secrecy – by making a
significant change in the tally of a polling station – in an
arbitrary district of Aulnay-sous-Bois and a rural district in
Toul.

1) Ballot secrecy in Aulnay-sous-Bois: Using historic
data and/or polls, it is possible to construct the expected
distribution of votes. For simplicity, let us assume the
distribution of votes per polling station is the average of the
2010 tally (Table I), and that if the adversary can increase
the number of votes for a particular candidate by more than
σ (by replaying a voter’s ballot), then this is sufficient to
determine that the voter voted for that candidate. In addition,
suppose that the adversary corrupts abstaining voters and
therefore we do not consider the redistribution of votes. We
remark that corrupting abstaining voters may be a fruitful
strategy, since abstaining voters do not sacrifice their vote
by participating in an attack.

Table II presents the expected distribution of votes, and
includes the number of voters that an adversary must corrupt
to determine if a voter voted for a particular candidate,
for various values of σ. We shall further assume that
participation in the region is consistent with 2010; that is,
291 of the 832 eligible voters are expected to participate. It
follows that 50 voters corresponds to approximately 6% of
the Aulnay-sous-Bois electorate, and 10 voters corresponds
to approximately 1%. Our results therefore demonstrate that
the privacy of a voter can be compromised by corrupting
a small number of voters. In particular, for medium-size
parties (in terms of votes received) – including, for example,
FN and Europe Ecologie – it is sufficient to corrupt 19 voters
to see the number of votes increase by 50%. Furthermore,
given the low turn-out (541 voters are expected to abstain),
it seems feasible to corrupt abstaining voters, and therefore
an attack can be launched without any voter sacrificing their
vote.

Limitations: For such an attack based on a statistical
model, we acknowledge that this model is rather naı̈ve,
but believe it is sufficiently indicative to illustrate the real
threat of an attack against privacy. A definitive mathematical
analysis should be considered in the future.

Party Expected tally σ = 200% σ = 150% σ = 50% σ = 20%
PS 81 162 122 41 17
UMP 68 136 102 34 14
FN 38 76 57 19 8
Europe Eco. 38 76 57 19 8
Front de gauche 17 34 26 9 4
NPA 14 28 21 7 3
MODEM 9 18 14 5 2
Debout la République 8 16 12 4 2
Alliance école 4 8 6 2 1
LO 3 6 5 2 1
Émergence 2 4 3 1 1
Liste chrétienne 2 4 3 1 1

Table II
NUMBER OF DUPLICATE BALLOTS FOR A SIGNIFICANT CHANGE IN THE TALLY

Cases of complete privacy breach: The probabilistic
nature of these attacks may introduce sufficient uncertainty
to prevent privacy violations, and we will consider voting
configurations where an adversary can definitively learn a
voter’s vote. Observe that if an attacker can corrupt half of
the voters at a polling station, then the vote of an arbitrary
voter can be revealed. Moreover, the cost of this attack can
be reduced. In particular, if n dishonest voter’s replay voter
V’s ballot, then it is possible to deduce that V did not vote
for any candidate that received strictly less than n+1 votes.
This leaks information about voter V’s chosen candidate and
in cases where exactly one candidate received more than n
votes, the voter’s vote can be deduced.

2) Ballot secrecy in small polling stations: The difficul-
ties of large scale corruption may prohibit our attack in the
majority of polling stations; however, our attack is feasible
in small polling stations found in rural districts. For example,
let us consider the 2007 legislative elections in the district of
Toul [54]. This district has 75350 eligible voters registered
at 193 polling stations. Accordingly, the average polling
station has 390 registered voters, but the variance is large.
Indeed, 33 polling stations have between 50 and 99 voters, 9
polling stations have less then 50 voters, and the smallest two
polling stations have 8, respectively 16, voters. Moreover,
the attack is simplified by non-participating voters. In these
small polling stations it is thus sufficient to corrupt a very
small number of voters to reveal a voter’s vote while the final
outcome of the election would not change as it is based on
75350 eligible voters.

IV. SOLUTION: WEEDING REPLAYED BALLOTS

Our attack exploits the possibility of replaying a voter’s
ballot without detection, and can be attributed to the lack of
ballot independence in Helios. This section sketches some
possible solutions to ensure ballot independence.

A. Weeding replayed ballots

The ballots replayed in our attacks can all be identified.
First, ciphertexts and signatures of knowledge should have
a unique representation as group elements, for example,
by requiring that the response component of signatures of
knowledge is in the interval [0, q − 1]. Second, a ballot

should not contain a ciphertext that already exists on the
bulletin board. The election officer should reject ballots that
do not satisfy these conditions. This solution is simple and
can easily be implemented in a future version of Helios.

B. Binding ballots to voters

The previous approach requires a special mechanism
to handle replayed ballots. We now propose a technique
that makes such actions futile. In essence, based upon
inspiration from [9, §4.2] and [42], we ensure that proofs
associated with replayed ballots are considered invalid;
that is, we bind the link between a voter and her bal-
lot. This is achieved by adding the identity of the voter
in the construction of challenges used by signatures of
knowledge. More precisely, for voter id, the sign algorithm
(defined in Appendix A) is modified as follows: on input
(a, b), such that a ≡ gr mod p and b ≡ hr · gm mod
p, let challenge cm = H(amin, bmin, . . . , amax, bmax, id) −∑
i∈{min,...,m−1,m+1,...,max} ci (mod q), where values amin,

bmin, . . . , amax, bmax and c1, . . . , cm−1, cm+1, . . . , cm are de-
fined as before. For correctness, the verification algo-
rithm must also be modified. In particular, for candidate
signatures constructed by voter id, the verifier should
check H(amin, bmin, . . . , amax, bmax, id) ≡

∑
min≤i≤max ci

(mod q).
In a similar direction, the electronic voting protocol pro-

posed by Juels, Catalano & Jakobsson [22] – which has
been implemented by Clarkson, Chong & Myers [55], [56]
as Civitas – requires ballots to be bound to private voter
credentials. This provides eligibility verifiability [8]: anyone
can check that each ballot published on the bulletin board
was cast by a registered voter and at most one ballot is tallied
per voter. It is likely that eligibility verifiability enforces
ballot independence, but the provision of eligibility verifia-
bility appears to be expensive, in particular, Juels, Catalano
& Jakobsson and Clarkson, Chong & Myers assume the
existence of an infrastructure for voter credentials.

C. Discussion

Our weeding replayed ballots solution is particular at-
tractive because it adheres to Benaloh’s notion of ballot
casting assurance [24], [25] which asserts that the ballot

encryption device (the browser script in this instance) does
not know the voter’s identity. (We remark that neither
the original Helios scheme nor our proposed fix strictly
satisfy Benaloh’s notion of ballot casting assurance if a
voter decides to use her own computer.) The ballot casting
assurance principle is important because knowledge of the
voter’s identity could be used to infer the likelihood of
auditing and this information can be used to influence the
behaviour of the ballot encryption device; in particular, if
a ballot is unlikely to be audited, then the device may act
maliciously, for example, by encrypting a different vote. By
comparison, the binding ballots to voters solution would
necessarily require that the voter’s identity is revealed to the
ballot encryption device. Moreover, for privacy purposes, the
election officer may chose to allocate voters with pseudo-
identities when casting ballots (rather than associate ballots
with actual voter identities); since these pseudo-identities are
unknown to voters in advance, an additional interaction with
the election officer would be required. (Note that the use of
pseudo-identities does not prevent the attack by breaking
the link between ballots and voters, because the link is
known by the election officer.) Finally, extending Helios to
provide eligibility verifiability would require a considerable
extension to the Helios code-base and, furthermore, finding a
suitable solution is an open problem. Accordingly, we adopt
the weeding replayed ballot solution and, in the next section,
we show that this is sufficient to ensure ballot secrecy, in
the formal setting.

V. FORMAL PROOF OF BALLOT SECRECY

We formally prove that weeding duplicate ballots ensures
ballot secrecy. We make use of the applied pi calculus [57],
[58], due to its proven suitability for evaluating security
properties of electronic voting protocols (see, for exam-
ple, [19], [6], [8]).

A. Applied pi calculus

We first recall the applied pi calculus setting [57]. We
assume an infinite set of names a, b, c, . . . , k, . . . ,m, n, . . . ,
s, . . ., an infinite set of variables x, y, z, . . ., and a signa-
ture Σ consisting of a finite set of function symbols, each
with an associated arity. We use metavariables u,w to range
over both names and variables. Terms L,M,N, T, U, V are
built by applying function symbols to names, variables,
and other terms. We write {M/x} for the substitution that
replaces the variable x with the term M . Arbitrarily large
substitutions can be written as {M1/x1, . . . ,Ml/xl} and the
letters σ and τ range over substitutions. We write Nσ for
the result of applying σ to the free variables of term N . A
term is ground when it does not contain variables.

The signature Σ is equipped with an equational theory
E, that is, a set of equations of the form M = N , where
the terms M,N are defined over the signature Σ. We define
equality modulo the equational theory, written =E , as the

Figure 2 Syntax for processes
P,Q,R ::= (plain) processes

0 null process
P | Q parallel composition
!P replication
ν n.P name restriction
if φ then P else Q conditional
u(x).P message input
u〈M〉.P message output

A,B,C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

smallest equivalence relation on terms that contains E and
is closed under application of function symbols, substitution
of terms for variables and bijective renaming of names. We
write M =E N when the equation M = N is in the theory
E, and keep the signature implicit. When E is clear from
its usage, we may abbreviate M =E N as M = N . The
negation of M =E N is denoted M 6=E N (and similarly
abbreviated M 6= N).

Processes and extended processes are defined in the usual
way (Figure 2). We write ν ũ for the (possibly empty)
series of pairwise-distinct binders ν u1. · · · .ν ul. The ac-
tive substitution {M/x} can replace the variable x for the
term M in every process it comes into contact with and
this behaviour can be controlled by restriction, in partic-
ular, the process ν x.({M/x} | P) corresponds exactly to
let x = M in P . Arbitrarily large active substitutions can
be obtained by parallel composition and we occasionally
abbreviate {M1/x1} | . . . | {Ml/xl} as {M1/x1, . . . ,Ml/xl}
or {M̃/x̃}. We also use σ and τ to range over active sub-
stitutions, and write Nσ for the result of applying σ to the
free variables of N . Extended processes must have at most
one active substitution for each variable and there is exactly
one when the variable is under restriction. The only minor
change compared to [57] is that conditional branches now
depend on formulae φ, ψ ::= M = N | M 6= N | φ ∧ ψ.
If M and N are ground, we define [[M = N]] to be true if
M =E N and false otherwise. The semantics of [[]] is then
extended to formulae in the standard way.

The scope of names and variables are delimited by binders
u(x) and ν u. The set of bound names is written bn(A) and
the set of bound variables is written bv(A); similarly we
define the set of free names fn(A) and free variables fv(A).
Occasionally, we write fn(M) (and fv(M) respectively) for
the set of names (and respectively variables) which appear in
term M . An extended process is closed when every variable
x is either bound or defined by an active substitution.

We define a context C[] to be an extended process with a
hole. We obtain C[A] as the result of filling C[]’s hole with
the extended process A. An evaluation context is a context
whose hole is not in the scope of a replication, a conditional,
an input, or an output. A context C[] closes A when C[A]
is closed.

A frame, denoted ϕ or ψ, is an extended process built
from the null process 0 and active substitutions {M/x},
which are composed by parallel composition and restriction.
The domain dom(ϕ) of a frame ϕ is the set of variables
that ϕ exports, that is, the set of variables x for which ϕ
contains an active substitution {M/x} such that x is not
under restriction. Every extended process A can be mapped
to a frame ϕ(A) by replacing every plain process in A
with 0.

1) Operational semantics: The operational semantics are
defined by three relations: structural equivalence (≡), in-
ternal reduction (−→), and labelled reduction (α−→). These
relations satisfy the rules in Figure 3 and are defined
such that: structural equivalence is the smallest equivalence
relation on extended processes that is closed by α-conversion
of both bound names and bound variables, and closed
under application of evaluation contexts; internal reduction
is the smallest relation on extended processes closed under
structural equivalence and application of evaluation contexts;
and for labelled reductions α is a label of the form c(M),
c〈u〉, or ν u.c〈u〉 such that u is either a channel name or a
variable of base type.

2) Equivalence: The definition of observational equiva-
lence [57] quantifies over all contexts which makes proofs
difficult, therefore we adopt labelled bisimilarity in this
paper. Labelled bisimilarity relies on an equivalence relation
between frames, called static equivalence.

Definition 1 (Static equivalence): Two closed frames ϕ
and ψ are statically equivalent, denoted ϕ ≈s ψ, if
dom(ϕ) = dom(ψ) and there exists a set of names ñ and
substitutions σ, τ such that ϕ ≡ ν ñ.σ and ψ ≡ ν ñ.τ and
for all terms M,N such that ñ ∩ (fn(M) ∪ fn(N)) = ∅,
we have Mσ =E Nσ holds if and only if Mτ =E Nτ
holds. Two closed extended processes A,B are statically
equivalent, written A ≈s B, if their frames are statically
equivalent; that is, ϕ(A) ≈s ϕ(B).

The relation ≈s is called static equivalence because it only
examines the current state of the processes, and not the
processes’ dynamic behaviour. The following definition of
labelled bisimilarity captures the dynamic part.

Definition 2 (Labelled bisimilarity): Labelled bisimilarity
(≈l) is the largest symmetric relation R on closed extended
processes such that A R B implies:

1) A ≈s B;
2) if A −→ A′, then B −→∗ B′ and A′ R B′ for some B′;
3) if A α−→ A′ such that fv(α) ⊆ dom(A) and bn(α) ∩

Figure 3 Semantics for processes

PAR-0 A ≡ A | 0
PAR-A A | (B | C) ≡ (A | B) | C
PAR-C A | B ≡ B | A
REPL !P ≡ P | !P

NEW-0 ν n.0 ≡ 0
NEW-C ν u.ν w.A ≡ ν w.ν u.A
NEW-PAR A | ν u.B ≡ ν u.(A | B)

where u 6∈ fv(A) ∪ fn(A)

ALIAS ν x.{M/x} ≡ 0
SUBST {M/x} | A ≡ {M/x} | A{M/x}
REWRITE {M/x} ≡ {N/x}

where M =E N

COMM c〈x〉.P | c(x).Q −→ P | Q

THEN if φ then P else Q −→ P if [[φ]] = true

ELSE if φ then P else Q −→ Q otherwise

IN c(x).P
c(M)−−−→ P{M/x}

OUT-ATOM c〈u〉.P c〈u〉−−−→ P

OPEN-ATOM
A

c〈u〉−−−→ A′ u 6= c

ν u.A
ν u.c〈u〉−−−−−→ A′

SCOPE
A

α−→ A′ u does not occur in α

ν u.A
α−→ ν u.A′

PAR
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

STRUCT
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

fn(B) = ∅, then B −→∗ α−→−→∗ B′ and A′ R B′ for
some B′.

B. Modelling Helios in applied pi

We start by constructing a suitable signature Σ to capture
the cryptographic primitives used by Helios and define an
equational theory E to capture the relationship between
these primitives.

1) Signature: We adopt the following signature.

Σ = {ok, zero, one,⊥, fst, snd, pair, ∗,+, ◦,
partial, checkspk, penc, spk, }

Functions ok, zero, one,⊥ are constants; fst, snd are unary
functions; dec, pair, partial, ∗,+, ◦ are binary functions;

checkspk, penc are ternary functions; and spk is a function
of arity four. We adopt infix notation for ∗,+, and ◦.

The term penc(T,N,M) denotes the encryption of plain-
text M , using random nonce N and key T . The term U ∗U ′
denotes the homomorphic combination of ciphertexts U and
U ′, the corresponding operation on plaintexts is written
M + M ′ and N ◦ N ′ on nonces. The partial decryption
of ciphertext U using key L is denoted partial(L,U). The
term spk(T,N,M,U) represents a signature of knowledge
that proves U is a ciphertext under public key T on the
plaintext M using nonce N and such that M is either the
constant zero or one. We introduce tuples using pairings and,
for convenience, pair(M1, pair(. . . , pair(Mn,⊥))) is occa-
sionally abbreviated as (M1, . . . ,Mn), and fst(sndi−1(M))
is denoted πi(M), where i ∈ N. We use the equational
theory E that asserts functions +, ∗, ◦ are commutative and
associative, and includes the equations:

fst(pair(x, y)) = x (E1)

snd(pair(x, y)) = y (E2)

zero + one = one (E3)

dec(xsk, penc(pk(xsk), xrand, xplain)) = xplain (E4)

dec(partial(xsk, ciph), ciph) = xplain (E5)
where ciph = penc(pk(xsk), xrand, xplain)

penc(xpk, yrand, yplain) ∗ penc(xpk, zrand, zplain)
= penc(xpk, yrand ◦ zrand, yplain + zplain) (E6)

checkspk(xpk, ball, spk(xpk, xrand, zero, ball))=ok (E7)
where ball = penc(xpk, xrand, zero)

checkspk(xpk, ball, spk(xpk, xrand, one, ball))=ok (E8)
where ball = penc(xpk, xrand, one)

Equation E5 allows plaintext M to be recovered from
ciphertext penc(pk(L), N,M) given partial decryption
partial(L, penc(pk(L), N,M)), when the partial decryption
is constructed using the private key L. Equation E6 rep-
resents the homomorphic combination of ciphertexts. The
Equations E7 and E8 allow the verification of signatures
of knowledge spk(T,N,M, penc(T,N,M)), when M ∈
{zero, one}. The remaining equations are standard.

Example 1: Given randomness N,N ′, plaintexts
(M,M ′) ∈ {(zero, zero), (zero, one), (one, zero)},
and public key T , one can construct a signature of
knowledge L = spk(T,N ◦ N ′,M + M ′, penc(T,N,M) ∗
penc(T,N ′,M ′)). Then checkspk applied to the public
key T , the homomorphically combined ciphertexts
penc(T,N,M) ∗ penc(T,N ′,M ′), and the signature L is
equal to ok using Equations E3, E6, E7, and E8

2) Helios process specification: In the applied pi calcu-
lus, it is sufficient to model the parts of the voting system

which need to be trusted for ballot secrecy; all the remain-
ing parts of the system are controlled by the adversarial
environment. Accordingly, we assume the existence of at
least two honest voters A, B; since this avoids the scenario
where ballot secrecy of an individual voter is compromised
by collusion amongst all the remaining voters. In addition,
the following trust assumptions are required.

• At least one trustee is honest
• The election officer runs the bulletin board honestly:

– Voters A, B have authentic channels with the
bulletin board

– Signatures of knowledge are checked for dishonest
voters*

– Replays of honest ballots (that is, those cast by A
or B) are rejected*

– The tally is correctly computed*
– The trustees have an authentic channel with the

bulletin board
• The browser script is trusted and has the correct public

key of the election

(Assumptions marked with * could be performed by an hon-
est trustee, rather than the bulletin board.) Although neither
voters nor observers can verify that there exists an honest
trustee, an assurance of trust is provided by distribution.
The necessity to trust the election officer to run the bulletin
board is less desirable and work-in-progress [59] aims to
weaken this assumption; moreover, to further distribute trust
assumptions, the trustees could also check signatures and
tallying. Finally, trust in the browser script can be obtained
by using software written by a reputable source or writing
your own code.

In an election with two candidates, the trusted compo-
nents are modelled by the administration process Aφn and
voting process V defined in Figure 4. For generality, the
administration process Aφn is parametrised by the number
of voters n and a formula φ; the latter corresponds to the
checks performed by the bulletin board before accepting a
ballot. We will consider several variants of Helios (including
the original Helios 2.0 protocol and our fixed scheme) by
considering suitable formula that we call Helios process
specifications.

Definition 3 (Helios process specification): A formula φ
is a Helios process specification, if fv(φ) ⊆ {y1, y2, yballot,
zpk}.

The voting process V contains free variables xvote, x′vote
to represent the voter’s vote (which is expected to be
encoded as constants zero and one), and the free variable
xauth represents the channel shared by the voter and the
bulletin board. The definition of the process V corresponds
to the description of the browser script (Figure 1). The
administration process Aφn is parametrised by the number of
voters n and Helios process specification φ. The restricted

Figure 4 Helios process specification
Given the number of voters n ≥ 2 and Helios process
specification φ, the administration process Aφn and voting
process V are defined below

V = ν r .
let ciph = penc(zpk, r, xvote) in
let spk = spk(zpk, r, xvote, ciph)) in
ν r′ .
let ciph′ = penc(zpk, r

′, x′vote) in
let spk′ = spk(zpk, r

′, x′vote, ciph
′)) in

let ŝpk = spk(zpk, r ◦ r′, xvote + x′vote, ciph ∗ ciph′) in
xauth〈(ciph, ciph′, spk, spk′, ŝpk)〉

Aφn = ν skT , a1, a2, d . (| BBφn | T | {pk(skT)/zpk})

BBφn = a1(y1) . c〈y1〉 . a2(y2) . c〈y2〉 .
a3(y3) . if φ{y3/yballot} then
· · · an(yn) . if φ{yn/yballot} then
let tally = π1(y1) ∗ · · · ∗ π1(yn) in
let tally′ = π2(y1) ∗ · · · ∗ π2(yn) in
d〈(tally, tally′)〉 .
d(ypartial) .
c〈ypartial〉 .
c〈(dec(π1(ypartial), tally), dec(π2(ypartial), tally

′))〉

T = d(ytally) .

d〈(partial(skT , π1(ytally)), partial(skT , π2(ytally)))〉

name skT models the tallier’s secret key and the public part
pk(skT) is included in the process’s frame. The restricted
names a1, a2 model authentic channels between the two
honest voters and the bulletin board, and the channel name
d captures the authentic channel with the honest trustee.
To ensure the adversary has access to messages sent on
private channels, communication is relayed on the public
channel c. The sub-process BBφn represents the bulletin
board and T represents the tallier. The bulletin board accepts
ballots from each voter and checks they are valid using
the Helios process specification φ (this predicate will be
discussed in more detail below). Once all ballots have been
submitted, the bulletin board homomorphically combines
the ciphertexts and sends the encrypted tallies to the tallier
for decryption. (The necessity for all voters to participate
is included for simplicity, in particular, our bulletin board
does not weed ballots containing invalid proofs.) The tallier
receives the homomorphic combinations of ballots ytally and
derives a partial decryption for each candidate; these partial
decryptions are sent to the bulletin board and the election
result is published.

Example 2: Given a Helios process specification φ, an
election with voters A and B who select votes (m1,m

′
1),

(m2,m
′
2) ∈ {(zero, zero), (zero, one), (one, zero)} and such

that the other n − 2 voters are controlled by the adver-
sary, can be modelled by the process Aφn[V {a1/xauth}σ |
V {a2/xauth}τ], where σ = {m1/xvote,m

′
1/x′vote} and τ =

{m2/xvote,m
′
2/x′vote}.

Ballot validity: In Helios 2.0, the election officer
considers a ballot to be valid if the signature proofs of
knowledge hold. Accordingly, we can model the Helios
administration by the process Aφorig

n where the Helios process
specification φorig is defined as follows.

φorig , checkspk(zpk, π1(yballot), π3(yballot)) = ok

∧ checkspk(zpk, π2(yballot), π4(yballot)) = ok

∧ checkspk(zpk, π1(yballot) ∗ π2(yballot), π5(yballot)) = ok

We have shown that these checks are insufficient to en-
sure ballot secrecy. Our weeding replayed ballots solution
proposed in Section IV-A additionally requires that the
ciphertexts inside the ballot do not appear on the bulletin
board. This revised scheme can be modelled using the Helios
process specification φsol is defined as follows.

φsol , φorig ∧ π6(yballot) =⊥∧∧
i,j∈{1,2}

πi(yj) 6= π1(yballot) ∧ πi(yj) 6= π2(yballot)

We can also model a naı̈ve solution that would consist in
weeding only identical ballots by considering the Helios
process specification φident defined below.

φident , φorig ∧ π6(yballot) =⊥∧ yballot 6= y1 ∧ yballot 6= y2

We have already shown that removing exact duplicates is
insufficient because it would fail to detect variants of our
attack whereby the contents of a ballot are permuted. In the
next section, we formally show that Helios 2.0 (modelled
using φorig) and the naı̈ve solution (modelled using φident)
do not satisfy ballot secrecy, and that our proposed solution
(modelled using φsol) does satisfy ballot secrecy.

C. Formal analysis: Ballot secrecy

Based upon Delaune, Kremer & Ryan [4], [5], [19],
and as previous discussed (see related work in Section I),
we formalise ballot secrecy for two voters A, B and two
candidates t, t′ with the assertion that an adversary cannot
distinguish between a situation in which voter A votes for
candidate t and voter B votes for candidate t′, from another
situation in which A votes t′ and B votes t. Formally, this
is captured by Definition 4.

Definition 4 (Ballot secrecy): Given a Helios process
specification φ, we say ballot secrecy is satisfied if
for all (m1,m

′
1), (m2,m

′
2) ∈ {(zero, zero), (zero, one),

(one, zero)} and integers n ≥ 2, we have

Aφn[V {a1/xauth}σ | V {a2/xauth}τ]

≈l Aφn[V {a1/xauth}τ | V {a2/xauth}σ]

where σ = {m1/xvote,m
′
1/x′vote} and τ = {m2/xvote,

m′
2/x′vote}.

The ballot secrecy definition proposed by Delaune, Kre-
mer & Ryan considered a vote to be an arbitrary name,
whereas a vote in our setting must be a pair (m,n) ∈
{(zero, zero), (zero, one), (one, zero)}; it follows that Def-
inition 4 is a straightforward variant of the original.

The Helios 2.0 protocol does not satisfy our privacy
definition (Lemma 1) and naı̈ve ballot weeding solutions
are also insufficient (Lemma 2).

Lemma 1: The Helios process specification φorig does not
satisfy ballot secrecy.

Intuitively, the proof of Lemma 1 is due to the environ-
ment’s ability to replay A’s ballot, therefore introducing an
observable difference: the result will include two instances
of A’s vote. Formally, this follows immediately from the
proof Lemma 2.

Lemma 2: The Helios process specification φident does not
satisfy ballot secrecy.

Proof: Consider n = 3, (m1,m
′
1) = (zero, one) and

(m2,m
′
2) = (one, zero). Let σ = {m1/xvote,m

′
1/x′vote}

and τ = {m2/xvote,m
′
2/x′vote}. We consider a sequence of

transitions where the two voters output their ballots and
then the adversary chooses its ballots to be a permutation
of the first voter’s ballot. Namely, if the first voter’s ballot
is (ciph, ciph′, spk, spk′, ŝpk) then the adversary outputs
(ciph′, ciph, spk′, spk, ŝpk). Formally, this corresponds to
the transitions.

Aφn[V {a1/xauth}σ | V {a2/xauth}τ] −→ ν x.c〈x〉−−−−−→−→ ν y.c〈y〉−−−−−→
c((π2(x),π1(x),π4(x),π3(x),π5(x)))−−−−−−−−−−−−−−−−−−−−−−→−→∗ ν z.c〈z〉−−−−−→ ν ñ.τ1

for some names ñ and substitution τ1 such that:

dec(π1(z), π1(x) ∗ π1(y) ∗ π2(x))τ1 =E one + one

Then this labeled transition has to matched:

Aφn[V {a1/xauth}τ | V {a2/xauth}σ] −→ ν x.c〈x〉−−−−−→−→ ν y.c〈y〉−−−−−→
c((π2(x),π1(x),π4(x),π3(x),π5(x)))−−−−−−−−−−−−−−−−−−−−−−→−→∗ ν z.c〈z〉−−−−−→ ν ñ.τ2

for some names ñ and substitution τ2, such that:

dec(π1(z), π1(x) ∗ π1(y) ∗ π2(x))τ2 =E one

It follows immediately that ν ñ.τ1 6≈s ν ñ.τ2 and, hence,
φident does not satisfy ballot secrecy.

In contrast, removing duplicates up to permutation ensures
ballot secrecy.

Theorem 1: The Helios process specification φsol satisfies
ballot secrecy.

ProVerif is an automatic tool that can check equivalence in
the applied pi calculus [60]. Although ProVerif has been
successfully used to prove ballot secrecy (for example, in

the Fujioka, Okamoto & Ohta protocol [61]), it cannot
prove Theorem 1 for two main reasons. First, ProVerif
cannot prove equivalences under the homomorphic equation
(Equation E6). Second, our theorem states ballot secrecy
for any number n of participants and ProVerif cannot han-
dle parametrised processes. We proceed by constructing a
relation that relates Aφn[V {a1/xauth}σ | V {a2/xauth}τ] and
Aφn[V {a1/xauth}τ | V {a2/xauth}σ], and all their successors,
such that it satisfies the three properties of Definition 2. In
particular, the two final frames (containing the result of the
election) should be statically equivalent. A key step is to
show that ballots accepted by the bulletin board must have
a particular form due to the checks performed by φsol.

Definition 5 (Valid ballot): A term N is said to be a valid
ballot if N = (N1, N2, N3, N4, N5) for some Ni such that
N1 = penc(zpk, N

1
1 , N

2
1) and N1 = penc(zpk, N

1
2 , N

2
2) with

N2
1 , N

2
2 ∈ {zero, one}.

Having shown that the bulletin board accepts only valid
ballots, we can deduce that the outcome of the election at the
end of the execution of Aφn[V {a1/xauth}σ | V {a2/xauth}τ] is
exactly the same as in Aφn[V {a1/xauth}τ | V {a2/xauth}σ]. We
can then conclude the proof of Theorem 1 by showing that
the partial decryptions and the encrypted ballots of honest
voters do not leak any extra information to the adversary.
The full proof appears in the long version of this paper [62].

D. Limitations

The limitations of our model, which we introduced to
simplify the presentation and proof, are detailed below; we
believe a full security proof should follow using similar
reasoning. We consider a model with only two candidates
and, moreover, we make use of the (standard) definition of
ballot secrecy which is limited to elections with two honest
voters [4], [5], [19]. In addition, the definition of ballot
secrecy does not consider parallel composition of protocol
executions and we therefore recommend using distinct keys
for each election (although we believe it should be sufficient
to include an election identifier – for example, the election
fingerprint – within the challenge hashes included within
signatures of knowledge, similar to the methodology in
Section IV-B). The administrative process Aφn enforces an
ordering on voters (namely, the voter using private channel
a1 must vote first, followed by the voter using private
channel a2, and then any remaining voters – controlled by
the adversarial environment – can vote) and Aφn does not
permit revoting. The signature and equational theory do not
capture low-level technical details surrounding the correct
construction of public keys; in particular, we do not use
signatures of knowledge to verify correct key construction.
We also omit signatures of knowledge that demonstrate
correct construction of partial decryptions. Finally, we offer
the usual caveat to formal analysis and acknowledge that our
result does not imply the absence of real-world attacks (see,

for example, [63], [64], [65], [66], [67]). It may, therefore,
be possible to modify the ballot in a way that would not
be captured by our analysis. (In particular, it is important
to notice that the scheme used for signatures of knowledge
is not provably non-malleable.) Accordingly, we encourage
a thorough cryptographic analysis of our solution in the
provable security model.

VI. CONCLUSION AND FURTHER DISCUSSION

This paper identifies a vulnerability in Helios 2.0 which
can be used to violate ballot secrecy. Critics may argue that
an attack is unrealistic due its high cost; indeed, in some
cases, the attack may change the outcome of an election (that
is, the votes introduced for the purposes of violating privacy
may swing the result), and large scale privacy invasions
would be expensive in terms of the required number of
dishonest voters. However, if the views of these critics are to
be entertained, then we must revise the standard definitions
of ballot secrecy in the literature (for example, [4], [5],
[6]) because Helios cannot satisfy them. Furthermore, we
believe all voters should be considered equally and, hence,
the preservation of ballot secrecy should be universal. But,
for elections using Helios, our case study demonstrates
the contrary: in French legislative elections a coalition of
voters can gain some information about a voter’s vote in
an arbitrary polling station and, moreover, if the number of
voters registered at a particular polling station is small (for
example, in a rural setting), then a voter’s privacy can be
violated by a few dishonest voters. It follows that privacy
of individual voters can be compromised by a few dishonest
voters and, accordingly, we believe our attack is significant.
We also believe the absence of ballot independence can be
similarly exploited in other electronic voting protocols to
violate privacy (indeed, our preliminary results support this
hypothesis). To address the problem, we have introduced
a variant of the Helios protocol which has been shown to
satisfy definitions of ballot secrecy in the applied pi calculus
and work in progress aims to provide a full security proof
in a cryptographic setting. Finally, Adida & Pereira have
acknowledged the vulnerability [68], [69] and a fix has been
proposed for future Helios releases.

ACKNOWLEDGEMENTS

We are grateful to Ben Adida and Olivier Pereira for
their constructive comments, and hope this research will
enhance future Helios releases. Discussion with Mark D.
Ryan helped clarify the presentation of this paper, and
Ben Adida informed us that Douglas Wikström is the
contemporaneous discoverer of this attack. David Bernhard
gave useful feedback on our attack variants. The research
leading to these results has received funding from the
European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC

grant agreement n◦ 258865, project ProSecure, and the
ANR-07-SeSur-002 AVOTÉ project.

APPENDIX

A. Signatures of knowledge

Helios is reliant on signatures of knowledge to ensure
secrecy and integrity of the ElGamal scheme, and to ensure
voters encrypt valid votes. This appendix presents suitable
cryptographic primitives. Let H denote a hash function. In
Helios, H is defined to be SHA-256.

1) Knowledge of discrete logs: Given the aforemen-
tioned cryptographic parameters (p, q, g), a signature of
knowledge demonstrating knowledge of a discrete logarithm
h = logg g

x can be derived, and verified, as defined by [70],
[71], [72].

Sign: Given x, select a random nonce w ∈R Z∗q . Com-
pute witness g′ = gw mod p, challenge c = H(g′) mod q
and response s = w + c · x mod q.

Verify: Given h and signature g′, s, check gs ≡ g′ · hc
(mod p), where c = H(g′) mod q.
A valid proof asserts knowledge of x such that x = logg h;
that is, h ≡ gx mod p.

2) Equality between discrete logs: Given the aforemen-
tioned cryptographic parameters (p, q, g), a signature of
knowledge demonstrating equality between discrete loga-
rithms logf f

x and logg g
x can be derived, and verified, as

defined by [44], [45].
Sign: Given f, g, x, select a random nonce w ∈R Z∗q .

Compute witnesses f ′ = fw mod p and g′ = gw mod p,
challenge c = H(f ′, g′) mod q and response s = w + c ·
x mod q.

Verify: Given f, g, h, k and signature f ′, g′, s, check
fs ≡ f ′ · hc (mod p) and gs ≡ g′ · kc (mod p), where
c = H(f ′, g′) mod q.
A valid proof asserts logf h = logg k; that is, there exists x,
such that h ≡ fx mod p and k ≡ gx mod p. This signature
of knowledge scheme can be extended to a disjunctive proof
of equality between discrete logs (see below).

For our purposes, given a ciphertext (a, b), each trustee
would derive a signature on g, a, xi, where xi is the trustee’s
private key share. The ith trustee’s signature g′i, a

′
i, ci, si

would be verified with respect to g, a, hi, ki, where hi is the
trustee’s share of the public key and ki is the trustee’s partial
decryption; that is, the proof asserts logg hi = loga ki, as
required for integrity of decryption.

3) Disjunctive proof of equality between discrete
logs: Given the aforementioned cryptographic parameters
(p, q, g), a signature of knowledge demonstrating that a
ciphertext (a, b) contains either 0 or 1 (without revealing
which), can be constructed by proving that either logg a =
logh b or logg a = logh b/g

m; that is, a signature of knowl-
edge demonstrating a disjunct proof of equality between
discrete logarithms [41], [43]. Observe for a valid ciphertext
(a, b) that a ≡ gr mod p and b ≡ hr · gm mod p for

some nonce r ∈ Z∗q ; hence the former disjunct logg g
r =

logh h
r · gm is satisfied when m = 0, and the latter

logg g
r = logh(hr · gm)/gm when m = 1.

This technique is generalised by [13] to allow a signature
of knowledge demonstrating that a ciphertext (a, b) con-
tains message m, where m ∈ {min, . . . ,max} for some
system parameters min,max ∈ N. Formally, a signature
of knowledge demonstrating a disjunct proof of equality
between discrete logarithms can be derived, and verified,
as follows [13], [41], [43].

Sign: Given ciphertext (a, b) such that a ≡ gr mod p
and b ≡ hr · gm mod p for some nonce r ∈ Z∗q , where
plaintext m ∈ {min, . . . ,max}. For all i ∈ {min, . . . ,m −
1,m + 1, . . . ,max}, compute challenge ci ∈R Z∗q , re-
sponse si ∈R Z∗q and witnesses ai = gsi/aci mod p
and bi = hsi/(b/gi)ci mod p. Select a random nonce
w ∈R Z∗q . Compute witnesses am = gw mod p and bm =
hw mod p, challenge cm = H(amin, bmin, . . . , amax, bmax) −∑
i∈{min,...,m−1,m+1,...,max} ci (mod q) and response sm =

w + r · cm mod q.
Verify: Given (a, b) and (amin, bmin, cmin, smin, . . . ,

amax, bmax, cmax, smax), for each min ≤ i ≤ max check
gsi ≡ ai · aci (mod p) and hsi ≡ bi · (b/gi)ci (mod p). Fi-
nally, check H(amin, bmin, . . . , amax, bmax) ≡

∑
min≤i≤max ci

(mod q).
A valid proof asserts that (a, b) is a ciphertext containing
the message m such that m ∈ {min, . . . ,max}.

REFERENCES

[1] A. Fujioka, T. Okamoto, and K. Ohta, “A Practical Secret
Voting Scheme for Large Scale Elections,” in AUSCRYPT’92:
Workshop on the Theory and Application of Cryptographic
Techniques, ser. LNCS, vol. 718. Springer, 1992, pp. 244–
251.

[2] T. Okamoto, “Receipt-Free Electronic Voting Schemes for
Large Scale Elections,” in SP’97: 5th International Workshop
on Security Protocols, ser. LNCS, vol. 1361. Springer, 1998,
pp. 25–35.

[3] A. Juels, D. Catalano, and M. Jakobsson, “Coercion-Resistant
Electronic Elections,” Cryptology ePrint Archive, Report
2002/165, 2002.

[4] S. Kremer and M. D. Ryan, “Analysis of an Electronic Voting
Protocol in the Applied Pi Calculus,” in ESOP’05: 14th
European Symposium on Programming, ser. LNCS, vol. 3444.
Springer, 2005, pp. 186–200.

[5] S. Delaune, S. Kremer, and M. Ryan, “Coercion-Resistance
and Receipt-Freeness in Electronic Voting,” in CSFW’06:
19th Computer Security Foundations Workshop. IEEE
Computer Society, 2006, pp. 28–42.

[6] M. Backes, C. Hriţcu, and M. Maffei, “Automated Verification
of Remote Electronic Voting Protocols in the Applied Pi-
calculus,” in CSF’08: 21st Computer Security Foundations
Symposium. IEEE Computer Society, 2008, pp. 195–209.

[7] Participants of the Dagstuhl Conference on Frontiers of E-
Voting, “Dagstuhl Accord,” http://www.dagstuhlaccord.org/,
2007.

[8] S. Kremer, M. D. Ryan, and B. Smyth, “Election verifia-
bility in electronic voting protocols,” in ESORICS’10: 15th
European Symposium on Research in Computer Security, ser.
LNCS, vol. 6345. Springer, 2010, pp. 389–404.

[9] R. Gennaro, “Achieving independence efficiently and se-
curely,” in PODC’95: 14th Principles of Distributed Com-
puting Symposium. ACM Press, 1995, pp. 130–136.

[10] D. Chaum, P. Y. Ryan, and S. Schneider, “A Practical Voter-
Verifiable Election Scheme,” in ESORICS’05: 10th European
Symposium On Research In Computer Security, ser. LNCS,
vol. 3679. Springer, 2005, pp. 118–139.

[11] B. Adida, “Advances in Cryptographic Voting Systems,”
Ph.D. dissertation, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology,
2006.

[12] ——, “Helios: Web-based Open-Audit Voting,” in USENIX
Security’08: 17th USENIX Security Symposium. USENIX
Association, 2008, pp. 335–348.

[13] B. Adida, O. Marneffe, O. Pereira, and J. Quisquater, “Elect-
ing a University President Using Open-Audit Voting: Analysis
of Real-World Use of Helios,” in EVT/WOTE’09: Electronic
Voting Technology Workshop/Workshop on Trustworthy Elec-
tions. USENIX Association, 2009.

[14] B. Smyth, M. D. Ryan, S. Kremer, and M. Kourjieh, “Towards
automatic analysis of election verifiability properties,” in
ARSPA-WITS’10: Joint Workshop on Automated Reasoning
for Security Protocol Analysis and Issues in the Theory of
Security, ser. LNCS, vol. 6186. Springer, 2010, pp. 165–
182.

[15] B. Smyth, “Formal verification of cryptographic protocols
with automated reasoning,” Ph.D. dissertation, School of
Computer Science, University of Birmingham, 2011.

[16] J. Benaloh, S. Vaudenay, and J. Quisquater, “Final Report of
IACR Electronic Voting Committee,” International Associa-
tion for Cryptologic Research. http://www.iacr.org/elections/
eVoting/finalReportHelios 2010-09-27.html, Sept 2010.

[17] S. Haber, J. Benaloh, and S. Halevi, “The Helios e-
Voting Demo for the IACR,” International Association for
Cryptologic Research. http://www.iacr.org/elections/eVoting/
heliosDemo.pdf, May 2010.

[18] Princeton University, “Princeton election server,” https://
princeton-helios.appspot.com/, 2010.

[19] S. Delaune, S. Kremer, and M. D. Ryan, “Verifying privacy-
type properties of electronic voting protocols,” Journal of
Computer Security, vol. 17, no. 4, pp. 435–487, Jul. 2009.

[20] ——, “Verifying Privacy-Type Properties of Electronic Vot-
ing Protocols: A Taster,” in Towards Trustworthy Elections:
New Directions in Electronic Voting, ser. LNCS, D. Chaum,
M. Jakobsson, R. L. Rivest, and P. Y. Ryan, Eds. Springer,
2010, vol. 6000, pp. 289–309.

[21] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang, and S. Yoo,
“Providing Receipt-Freeness in Mixnet-Based Voting Proto-
cols,” in ICISC’03: 6th International Conference on Informa-
tion Security and Cryptology, ser. LNCS, vol. 2971. Springer,
2004, pp. 245–258.

[22] A. Juels, D. Catalano, and M. Jakobsson, “Coercion-Resistant
Electronic Elections,” in WPES’05: 4th Workshop on Privacy
in the Electronic Society. ACM Press, 2005, pp. 61–70, see
also http://www.rsa.com/rsalabs/node.asp?id=2860.

[23] ——, “Coercion-Resistant Electronic Elections,” in Towards
Trustworthy Elections: New Directions in Electronic Voting,
ser. LNCS, D. Chaum, M. Jakobsson, R. L. Rivest, and P. Y.
Ryan, Eds. Springer, 2010, vol. 6000, pp. 37–63.

[24] J. Benaloh, “Simple Verifiable Elections,” in EVT’06: Elec-
tronic Voting Technology Workshop. USENIX Association,
2006.

[25] ——, “Ballot Casting Assurance via Voter-Initiated Poll
Station Auditing,” in EVT’07: Electronic Voting Technology
Workshop. USENIX Association, 2007.

[26] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifi-
able Secret Sharing and Achieving Simultaneity in the Pres-
ence of Faults,” in FOCS’85: 26th Foundations of Computer
Science Symposium. IEEE Computer Society, 1985, pp. 383–
395.

[27] B. Chor and M. O. Rabin, “Achieving Independence in Log-
arithmic Number of Rounds,” in PODC’87: 6th Principles of
Distributed Computing Symposium. ACM Press, 1987, pp.
260–268.

[28] D. Dolev, C. Dwork, and M. Naor, “Non-Malleable Cryptog-
raphy,” in STOC’91: 23rd Theory of computing Symposium.
ACM Press, 1991, pp. 542–552.

[29] ——, “Nonmalleable Cryptography,” Journal on Computing,
vol. 30, no. 2, pp. 391–437, 2000.

[30] R. Gennaro, “A Protocol to Achieve Independence in Con-
stant Rounds,” IEEE Transactions on Parallel and Distributed
Systems, vol. 11, no. 7, pp. 636–647, 2000.

[31] K. Sako and J. Kilian, “Secure Voting Using Partially Com-
patible Homomorphisms,” in CRYPTO’94: 14th International
Cryptology Conference, ser. LNCS, vol. 839. Springer, 1994,
pp. 411–424.

[32] D. Wikström, “Simplified Submission of Inputs to Protocols,”
Cryptology ePrint Archive, Report 2006/259, 2006.

[33] D. Wikström, “Simplified Submission of Inputs to Protocols,”
in SCN’08: 6th International Conference on Security and
Cryptography for Networks, ser. LNCS, vol. 5229. Springer,
2008, pp. 293–308.

[34] B. Pfitzmann, “Breaking Efficient Anonymous Channel,”
in EUROCRYPT’94: 11th International Conference on the
Theory and Applications of Cryptographic Techniques, ser.
LNCS, vol. 950. Springer, 1994, pp. 332–340.

[35] S. Estehghari and Y. Desmedt, “Exploiting the Client Vulnera-
bilities in Internet E-voting Systems: Hacking Helios 2.0 as an
Example,” in EVT/WOTE’10: Electronic Voting Technology
Workshop/Workshop on Trustworthy Elections. USENIX
Association, 2010.

[36] L. Langer, “Privacy and Verifiability in Electronic Voting,”
Ph.D. dissertation, Fachbereich Informatik, Technischen Uni-
versität Darmstadt, 2010.

[37] L. Langer, A. Schmidt, J. Buchmann, and M. Volkamer, “A
Taxonomy Refining the Security Requirements for Electronic
Voting: Analyzing Helios as a Proof of Concept,” in ARES’10:
5th International Conference on Availability, Reliability and
Security. IEEE Computer Society, 2010, pp. 475–480.

[38] M. Volkamer and R. Grimm, “Determine the Resilience
of Evaluated Internet Voting Systems,” in Re-Vote’09: First
International Workshop on Requirements Engineering for E-
Voting Systems. IEEE Computer Society, 2010, pp. 47–54.

[39] L. Langer, A. Schmidt, J. Buchmann, M. Volkamer, and
A. Stolfik, “Towards a Framework on the Security Require-
ments for Electronic Voting Protocols,” in Re-Vote’09: First
International Workshop on Requirements Engineering for E-
Voting Systems. IEEE Computer Society, 2010, pp. 61–68.

[40] M. Volkamer, Evaluation of Electronic Voting: Requirements
and Evaluation Procedures to Support Responsible Election
Authorities, ser. Lecture Notes in Business Information Pro-
cessing. Springer, 2009, vol. 30.

[41] R. Cramer, I. Damgård, and B. Schoenmakers, “Proofs of
Partial Knowledge and Simplified Design of Witness Hiding
Protocols,” in CRYPTO’94: 14th International Cryptology
Conference, ser. LNCS, vol. 839. Springer, 1994, pp. 174–
187.

[42] R. Cramer, R. Gennaro, and B. Schoenmakers, “A Secure
and Optimally Efficient Multi-Authority Election Scheme,”
in EUROCRYPT’97: 16th International Conference on the
Theory and Applications of Cryptographic Techniques, ser.
LNCS, vol. 1233. Springer, 1997, pp. 103–118.

[43] B. Schoenmakers, “Voting Schemes,” in Algorithms and The-
ory of Computation Handbook, Second Edition, Volume 2:
Special Topics and Techniques, M. J. Atallah and M. Blanton,
Eds. CRC Press, 2009, ch. 15.

[44] T. P. Pedersen, “A Threshold Cryptosystem without a Trusted
Party,” in EUROCRYPT’91: 10th International Conference on
the Theory and Applications of Cryptographic Techniques,
ser. LNCS, no. 547. Springer, 1991, pp. 522–526.

[45] D. Chaum and T. P. Pedersen, “Wallet Databases with
Observers,” in CRYPTO’92: 12th International Cryptology
Conference, ser. LNCS, vol. 740. Springer, 1993, pp. 89–
105.

[46] T. ElGamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” IEEE Transactions on
Information Theory, vol. 31, no. 4, pp. 469–472, 1985.

[47] D. Shanks, “Class number, a theory of factorization and
genera,” in Number Theory Institute, ser. Symposia in Pure
Mathematics, vol. 20. American Mathematical Society, 1971,
pp. 415–440.

[48] A. K. Lenstra and H. W. Lenstra Jr., “Algorithms in Number
Theory,” in Handbook of Theoretical Computer Science, Vol-
ume A: Algorithms and Complexity, J. Leeuwen, Ed. MIT
Press, 1990, ch. 12, pp. 673–716.

[49] C. Rudolph, “Covert Identity Information in Direct Anony-
mous Attestation (DAA),” in SEC’07: 22nd International
Information Security Conference, ser. International Federation
for Information Processing (IFIP), vol. 232. Springer, 2007,
pp. 443–448.

[50] A. Leung, L. Chen, and C. J. Mitchell, “On a Possible Privacy
Flaw in Direct Anonymous Attestation (DAA),” in Trust’08:
1st International Conference on Trusted Computing and Trust
in Information Technologies, ser. LNCS, no. 4968. Springer,
2008, pp. 179–190.

[51] B. Smyth and V. Cortier, “Attacking ballot secrecy in He-
lios,” YouTube video, linked from http://www.bensmyth.com/
publications/10-attacking-helios/, 2010.

[52] “Article L65 of the French electoral code,”
http://www.legifrance.gouv.fr/.

[53] “Résultat par bureau du premier tour des élections
régionales,” http://www.monaulnay.com/wp-content/uploads/
2010/03/resultat regionale par bureau.pdf, 2010.

[54] “Est républicain,” Daily French Newspaper, June, 18th 2007,
meurthe-et-Moselle edition.

[55] M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: Toward
a Secure Voting System,” in S&P’08: 29th Security and
Privacy Symposium. IEEE Computer Society, 2008, pp. 354–
368.

[56] ——, “Civitas: Toward a Secure Voting System,” http://hdl.
handle.net/1813/7875, Cornell University, Tech. Rep. 2007-
2081, May 2007, revised March 2008.

[57] M. Abadi and C. Fournet, “Mobile values, new names, and
secure communication,” in POPL’01: 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages. ACM Press, 2001, pp. 104–115.

[58] M. D. Ryan and B. Smyth, “Applied pi calculus,” in Formal
Models and Techniques for Analyzing Security Protocols,
V. Cortier and S. Kremer, Eds. IOS Press, 2011, ch. 6.

[59] O. Pereira, B. Adida, and O. Marneffe, “Bringing open
audit elections into practice: Real world uses of he-
lios,” Swiss e-voting workshop, https://www.e-voting-cc.ch/
images/sevot10/slides/helios 20100906.pdf. See also http://
www.uclouvain.be/crypto/electionmonitor/, 2010.

[60] B. Blanchet, M. Abadi, and C. Fournet, “Automated verifica-
tion of selected equivalences for security protocols,” Journal
of Logic and Algebraic Programming, vol. 75, no. 1, pp. 3–
51, Feb.–Mar. 2008.

[61] S. Delaune, M. D. Ryan, and B. Smyth, “Automatic veri-
fication of privacy properties in the applied pi-calculus,” in
IFIPTM’08: 2nd Joint iTrust and PST Conferences on Pri-
vacy, Trust Management and Security, ser. International Fed-
eration for Information Processing (IFIP), vol. 263. Springer,
2008, pp. 263–278.

[62] B. Smyth and V. Cortier, “Attacking and fixing helios: An
analysis of ballot secrecy,” Cryptology ePrint Archive, Report
2010/625, 2010.

[63] P. Y. A. Ryan and S. A. Schneider, “An Attack on a Recursive
Authentication Protocol. A Cautionary Tale,” Information
Processing Letters, vol. 65, no. 1, pp. 7–10, 1998.

[64] M. Abadi and P. Rogaway, “Reconciling Two Views of
Cryptography (The Computational Soundness of Formal En-
cryption),” in IFIP TCS’00: 1st International Conference
on Theoretical Computer Science, ser. LNCS, vol. 1872.
Springer, 2000, pp. 3–22.

[65] ——, “Reconciling Two Views of Cryptography (The Com-
putational Soundness of Formal Encryption),” Journal of
Cryptology, vol. 15, no. 2, pp. 103–127, 2002.

[66] B. Warinschi, “A Computational Analysis of the Needham-
Schröeder-(Lowe) Protocol,” in CSFW’03: 16th Computer
Security Foundations Workshop. IEEE Computer Society,
2003, pp. 248–262.

[67] ——, “A computational analysis of the Needham-Schroeder-
(Lowe) protocol,” Journal of Computer Security, vol. 13,
no. 3, pp. 565–591, 2005.

[68] B. Adida, “Attacks and Defenses,” Helios documentation,
http://documentation.heliosvoting.org/attacks-and-defenses,
2010.

[69] B. Adida and O. Pereira, “Private email communication,”
November 2010.

[70] D. Chaum, J. Evertse, J. Graaf, and R. Peralta, “Demonstrat-
ing Possession of a Discrete Logarithm Without Revealing It,”
in CRYPTO’86: 6th International Cryptology Conference, ser.
LNCS, vol. 263. Springer, 1987, pp. 200–212.

[71] D. Chaum, J. Evertse, and J. Graaf, “An Improved Protocol
for Demonstrating Possession of Discrete Logarithms and
Some Generalizations,” in EUROCRYPT’87: 4th Interna-
tional Conference on the Theory and Applications of Cryp-
tographic Techniques, ser. LNCS, vol. 304. Springer, 1988,
pp. 127–141.

[72] C.-P. Schnorr, “Efficient Identification and Signatures for
Smart Cards,” in CRYPTO’89: 9th International Cryptology
Conference, ser. LNCS, vol. 435. Springer, 1990, pp. 239–
252.

